ترغب بنشر مسار تعليمي؟ اضغط هنا

62 - Shuji Watanabe 2021
In the preceding papers the present author gave another proof of the existence and uniqueness of the solution to the BCS-Bogoliubov gap equation for superconductivity from the viewpoint of operator theory, and showed that the solution is partially di fferentiable with respect to the temperature twice. Thanks to these results, we can indeed partially differentiate the solution and the thermodynamic potential with respect to the temperature twice so as to obtain the entropy and the specific heat at constant volume of a superconductor. In this paper we show the behavior near absolute zero temperature of the thus-obtained entropy, the specific heat, the solution and the critical magnetic field from the viewpoint of operator theory since we did not study it in the preceding papers. Here, the potential in the BCS-Bogoliubov gap equation is an arbitrary, positive continuous function and need not be a constant.
62 - Shuji Watanabe 2020
In the preceding paper, introducing a cutoff, the present author gave a proof of the statement that the transition to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity on the basis of fixed-po int theorems, and solved the long-standing problem of the second-order phase transition from the viewpoint of operator theory. In this paper we study the temperature dependence of the specific heat and the critical magnetic field in the model from the viewpoint of operator theory. We first show some properties of the solution to the BCS-Bogoliubov gap equation with respect to the temperature, and give the exact and explicit expression for the gap in the specific heat divided by the specific heat. We then show that it does not depend on superconductors and is a universal constant. Moreover, we show that the critical magnetic field is smooth with respect to the temperature, and point out the behavior of both the critical magnetic field and its derivative.
210 - Shuji Watanabe 2019
In previous mathematical studies of the BCS gap equation of superconductivity, the gap function was regarded as an element of a space consisting of functions of the wave vector only. But we regard it as an element of a Banach space consisting of func tions both of the temperature and of the wave vector. On the basis of the implicit function theorem we first show that there is a unique solution of class $C^2$ with respect to the temperature, to the simplified gap equation obtained from the BCS gap equation. We then regard the BCS gap equation as a nonlinear integral equation on the Banach space above, and show that there is a unique solution to the BCS gap equation on the basis of the Schauder fixed-point theorem. We find that the solution to the BCS gap equation is continuous with respect to both the temperature and the wave vector, and that the solution is approximated by a function of class $C^2$ with respect to both the temperature and the wave vector. Moreover, the solution to the BCS gap equation is shown to reduce to the solution to the simplified gap equation under a certain condition.
66 - Shuji Watanabe 2017
We show that the transition from a normal conducting state to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity from the viewpoint of operator theory. Here we have no magnetic field. Moreover we obtain the exact and explicit expression for the gap in the specific heat at constant volume at the transition temperature. To this end, we have to differentiate the thermodynamic potential with respect to the temperature two times. Since there is the solution to the BCS-Bogoliubov gap equation in the form of the thermodynamic potential, we have to differentiate the solution with respect to the temperature two times. Therefore, we need to show that the solution to the BCS-Bogoliubov gap equation is differentiable with respect to the temperature two times as well as its existence and uniqueness. We carry out its proof on the basis of fixed point theorems.
We show the temperature dependence such as smoothness and monotone decreasingness with respect to the temperature of the solution to the BCS-Bogoliubov gap equation for superconductivity. Here the temperature belongs to the closed interval $[0,, tau] $ with $tau>0$ nearly equal to half of the transition temperature. We show that the solution is continuous with respect to both the temperature and the energy, and that the solution is Lipschitz continuous and monotone decreasing with respect to the temperature. Moreover, we show that the solution is partially differentiable with respect to the temperature twice and the second-order partial derivative is continuous with respect to both the temperature and the energy, or that the solution is approximated by such a smooth function.
80 - Shuji Watanabe 2016
We first show some properties such as smoothness and monotone decreasingness of the solution to the BCS-Bogoliubov gap equation for superconductivity. Moreover we give the behavior of the solution with respect to the temperature near the transition t emperature. On the basis of these results, dealing with the thermodynamic potential, we then show that the transition from a normal conducting state to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity from the viewpoint of operator theory. Here we have no magnetic field and we need to introduce a cutoff $varepsilon>0$, which is sufficiently small and fixed (see Remark ref{rmk:varepsilon}). Moreover we obtain the exact and explicit expression for the gap in the specific heat at constant volume at the transition temperature.
In the preceding work cite{watanabe3}, it is shown that the solution to the BCS gap equation for superconductivity is continuous with respect to both the temperature and the energy under the restriction that the temperature is very small. Without thi s restriction, we show in this paper that the solution is continuous with respect to both the temperature and the energy, and that the solution is Lipschitz continuous and monotonically decreasing with respect to the temperature.
47 - Shuji Watanabe 2013
From the viewpoint of operator theory, we deal with the temperature dependence of the solution to the BCS gap equation for superconductivity. When the potential is a positive constant, the BCS gap equation reduces to the simple gap equation. We first show that there is a unique nonnegative solution to the simple gap equation, that it is continuous and strictly decreasing, and that it is of class $C^2$ with respect to the temperature. We next deal with the case where the potential is not a constant but a function. When the potential is not a constant, we give another proof of the existence and uniqueness of the solution to the BCS gap equation, and show how the solution varies with the temperature. We finally show that the solution to the BCS gap equation is indeed continuous with respect to both the temperature and the energy under a certain condition when the potential is not a constant.
We characterize point transformations in quantum mechanics from the mathematical viewpoint. To conclude that the canonical variables given by each point transformation in quantum mechanics correctly describe the extended point transformation, we show that they are all selfadjoint operators in $L^2(mathbb{R}^n)$ and that the continuous spectrum of each coincides with $mathbb{R}$. They are also shown to satisfy the canonical commutation relations.
61 - Shuji Watanabe 2012
The Maskawa-Nakajima equation has attracted considerable interest in elementary particle physics. From the viewpoint of operator theory, we study the Maskawa-Nakajima equation in the massless abelian gluon model. We first show that there is a nonzero solution to the Maskawa-Nakajima equation when the parameter $lambda$ satisfies $lambda>2$. Moreover, we show that the solution is infinitely differentiable and strictly decreasing. We thus conclude that the massless abelian gluon model generates the nonzero quark mass spontaneously and exhibits the spontaneous chiral symmetry breaking when $lambda>2$. We next show that there is a unique solution $0$ to the Maskawa-Nakajima equation when $0<lambda<1$, from which we conclude that each quark remains massless and that the model realizes the chiral symmetry when $0<lambda<1$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا