ﻻ يوجد ملخص باللغة العربية
In the preceding papers the present author gave another proof of the existence and uniqueness of the solution to the BCS-Bogoliubov gap equation for superconductivity from the viewpoint of operator theory, and showed that the solution is partially differentiable with respect to the temperature twice. Thanks to these results, we can indeed partially differentiate the solution and the thermodynamic potential with respect to the temperature twice so as to obtain the entropy and the specific heat at constant volume of a superconductor. In this paper we show the behavior near absolute zero temperature of the thus-obtained entropy, the specific heat, the solution and the critical magnetic field from the viewpoint of operator theory since we did not study it in the preceding papers. Here, the potential in the BCS-Bogoliubov gap equation is an arbitrary, positive continuous function and need not be a constant.
In the preceding paper, introducing a cutoff, the present author gave a proof of the statement that the transition to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity on the basis of fixed-po
We first show some properties such as smoothness and monotone decreasingness of the solution to the BCS-Bogoliubov gap equation for superconductivity. Moreover we give the behavior of the solution with respect to the temperature near the transition t
We show that the transition from a normal conducting state to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity from the viewpoint of operator theory. Here we have no magnetic field. Moreover
It is proven that the ground state is unique in the Edwards-Anderson model for almost all continuous random exchange interactions, and any excited state with the overlap less than its maximal value has large energy in dimensions higher than two with
Recently, the zero-pairing limit of Hartree-Fock-Bogoliubov (HFB) mean-field theory was studied in detail in arXiv:2006.02871. It was shown that such a limit is always well-defined for any particle number A, but the resulting many-body description di