ترغب بنشر مسار تعليمي؟ اضغط هنا

An operator-theoretical study on the BCS-Bogoliubov model of superconductivity near absolute zero temperature

63   0   0.0 ( 0 )
 نشر من قبل Shuji Watanabe
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Shuji Watanabe




اسأل ChatGPT حول البحث

In the preceding papers the present author gave another proof of the existence and uniqueness of the solution to the BCS-Bogoliubov gap equation for superconductivity from the viewpoint of operator theory, and showed that the solution is partially differentiable with respect to the temperature twice. Thanks to these results, we can indeed partially differentiate the solution and the thermodynamic potential with respect to the temperature twice so as to obtain the entropy and the specific heat at constant volume of a superconductor. In this paper we show the behavior near absolute zero temperature of the thus-obtained entropy, the specific heat, the solution and the critical magnetic field from the viewpoint of operator theory since we did not study it in the preceding papers. Here, the potential in the BCS-Bogoliubov gap equation is an arbitrary, positive continuous function and need not be a constant.



قيم البحث

اقرأ أيضاً

62 - Shuji Watanabe 2020
In the preceding paper, introducing a cutoff, the present author gave a proof of the statement that the transition to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity on the basis of fixed-po int theorems, and solved the long-standing problem of the second-order phase transition from the viewpoint of operator theory. In this paper we study the temperature dependence of the specific heat and the critical magnetic field in the model from the viewpoint of operator theory. We first show some properties of the solution to the BCS-Bogoliubov gap equation with respect to the temperature, and give the exact and explicit expression for the gap in the specific heat divided by the specific heat. We then show that it does not depend on superconductors and is a universal constant. Moreover, we show that the critical magnetic field is smooth with respect to the temperature, and point out the behavior of both the critical magnetic field and its derivative.
80 - Shuji Watanabe 2016
We first show some properties such as smoothness and monotone decreasingness of the solution to the BCS-Bogoliubov gap equation for superconductivity. Moreover we give the behavior of the solution with respect to the temperature near the transition t emperature. On the basis of these results, dealing with the thermodynamic potential, we then show that the transition from a normal conducting state to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity from the viewpoint of operator theory. Here we have no magnetic field and we need to introduce a cutoff $varepsilon>0$, which is sufficiently small and fixed (see Remark ref{rmk:varepsilon}). Moreover we obtain the exact and explicit expression for the gap in the specific heat at constant volume at the transition temperature.
66 - Shuji Watanabe 2017
We show that the transition from a normal conducting state to a superconducting state is a second-order phase transition in the BCS-Bogoliubov model of superconductivity from the viewpoint of operator theory. Here we have no magnetic field. Moreover we obtain the exact and explicit expression for the gap in the specific heat at constant volume at the transition temperature. To this end, we have to differentiate the thermodynamic potential with respect to the temperature two times. Since there is the solution to the BCS-Bogoliubov gap equation in the form of the thermodynamic potential, we have to differentiate the solution with respect to the temperature two times. Therefore, we need to show that the solution to the BCS-Bogoliubov gap equation is differentiable with respect to the temperature two times as well as its existence and uniqueness. We carry out its proof on the basis of fixed point theorems.
It is proven that the ground state is unique in the Edwards-Anderson model for almost all continuous random exchange interactions, and any excited state with the overlap less than its maximal value has large energy in dimensions higher than two with probability one. Since the spin overlap is shown to be concentrated at its maximal value in the ground state, replica symmetry breaking does not occur in the Edwards-Anderson model near zero temperature.
Recently, the zero-pairing limit of Hartree-Fock-Bogoliubov (HFB) mean-field theory was studied in detail in arXiv:2006.02871. It was shown that such a limit is always well-defined for any particle number A, but the resulting many-body description di ffers qualitatively depending on whether the system is of closed-(sub)shell or open-(sub)shell nature. Here, we extend the discussion to the more general framework of Finite-Temperature HFB (FTHFB) which deals with statistical density operators, instead of pure many-body states. We scrutinize in detail the zero-temperature and zero-pairing limits of such a description, and in particular the combination of both limits. For closed-shell systems, we find that the FTHFB formulism reduces to the (zero-temperature) Hartree-Fock formulism, i.e. we recover the textbook solution. For open-shell systems, however, the resulting description depends on the order in which both limits are taken: if the zero-temperature limit is performed first, the FTHFB density operator demotes to a pure state which is a linear combination of a finite number of Slater determinants, i.e. the case of arXiv:2006.02871. If the zero-pairing limit is performed first, the FTHFB density operator remains a mixture of a finite number of Slater determinants with non-zero entropy, even as the temperature vanishes. These analytical findings are illustrated numerically for a series of Oxygen isotopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا