ترغب بنشر مسار تعليمي؟ اضغط هنا

Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD model show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is due to a rearrangement of nucleons in the intrinsic system. The former mechanism monotonically increases the dissipative energy and shows a weak dependence on the incident energy, while the latter depends on both the relative distance between two fusing nuclei and the incident energy. It is shown that the latter mechanism is responsible for the energy dependence of the fusion potential and explains the fading out of the fluctuation-dissipation relation.
A large number of complete fusion excitation functions of reactions including the breakup channel were measured in recent decades, especially in the last few years. It allows us to investigate the systematic behavior of the breakup effects on the com plete fusion cross sections. To this end, we perform a systematic study of the breakup effects on the complete fusion cross sections at energies above the Coulomb barrier. The reduced fusion functions F(x) are compared with the universal fusion functions which are used as a uniform standard reference. The complete fusion cross sections at energies above the Coulomb barrier are suppressed by the breakup of projectiles. This suppression effect for reactions induced by the same projectile is independent of the target and mainly determined by the lowest energy breakup channel of the projectile. There holds a good exponential relation between the suppression factor and the energy corresponding to the lowest breakup threshold.
Macroscopic parameters as well as precise information on the random force characterizing the Langevin type description of the nuclear fusion process around the Coulomb barrier are extracted from the microscopic dynamics of individual nucleons by expl oiting the numerical simulation of the improved quantum molecular dynamics. It turns out that the dissipation dynamics of the relative motion between two fusing nuclei is caused by a non-Gaussian distribution of the random force. We find that the friction coefficient as well as the time correlation function of the random force takes particularly large values in a region a little bit inside of the Coulomb barrier. A clear non-Markovian effect is observed in the time correlation function of the random force. It is further shown that an emergent dynamics of the fusion process can be described by the generalized Langevin equation with memory effects by appropriately incorporating the microscopic information of individual nucleons through the random force and its time correlation function.
103 - Shan-Gui Zhou 2008
A deformed relativistic Hartree-Bogoliubov (DRHB) model is developed aiming at a proper description of exotic nuclei, particularly deformed ones with large spatial extension. In order to give an adequate description of both the contribution of the co ntinuum and the large spatial distribution in exotic nuclei, the DRHB equations are solved in a Woods-Saxon basis in which the radial wave functions have proper asymptotic behaviors at large distance from the nuclear center which is crucial for the formation of halo. The formalism and the numerical procedure of the DRHB model in a Woods-Saxon basis are briefly presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا