ﻻ يوجد ملخص باللغة العربية
Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD model show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is due to a rearrangement of nucleons in the intrinsic system. The former mechanism monotonically increases the dissipative energy and shows a weak dependence on the incident energy, while the latter depends on both the relative distance between two fusing nuclei and the incident energy. It is shown that the latter mechanism is responsible for the energy dependence of the fusion potential and explains the fading out of the fluctuation-dissipation relation.
To explain the experimental facts that the fusion cross sections of proton-halo nucleus on heavy target nucleus is not enhanced as expected, the shielding supposition has been proposed. Namely, the proton-halo nucleus is polarized with the valence pr
We have constructed an empirical formulae for the fusion and interaction barriers using experimental values available till date. The fusion barriers so obtained have been compared with different model predictions based on the proximity, Woods-Saxon a
We present a new global optical potential (GOP) for nucleus-nucleus systems, including neutron-rich and proton-rich isotopes, in the energy range of $50 sim 400$ MeV/u. The GOP is derived from the microscopic folding model with the complex $G$-matrix
Nuclear fusion reactions, at energies, far below the Coulomb barrier play a significant role in the synthesis of light elements in the primordial nucleosynthesis as well as in the interior of compact stellar objects. Many different kinds of nuclear r
We discuss the role of deformation of the target nucleus in the fusion reaction of the $^{15}$C + $^{232}$Th system at energies around the Coulomb barrier, for which $^{15}$C is a well-known one-neutron halo nucleus. To this end, we construct the pot