ﻻ يوجد ملخص باللغة العربية
A deformed relativistic Hartree-Bogoliubov (DRHB) model is developed aiming at a proper description of exotic nuclei, particularly deformed ones with large spatial extension. In order to give an adequate description of both the contribution of the continuum and the large spatial distribution in exotic nuclei, the DRHB equations are solved in a Woods-Saxon basis in which the radial wave functions have proper asymptotic behaviors at large distance from the nuclear center which is crucial for the formation of halo. The formalism and the numerical procedure of the DRHB model in a Woods-Saxon basis are briefly presented.
The cranked relativistic Hartree+Bogoliubov theory has been applied for a systematic study of the nuclei around 254No, the heaviest elements for which detailed spectroscopic data are available. The deformation, rotational response, pairing correlatio
Weakly-bound deformed nuclei have been studied by the Skyrme Hartree-Fock-Bogoliubov (HFB) approach in large coordinate-space boxes. In particular, the box-size dependence of the HFB calculations of weakly-bound deformed nuclei are investigated, incl
The cranked relativistic Hartree+Bogoliubov theory has been applied for a systematic study of the nuclei around 254No, the heaviest nuclei for which detailed spectroscopic data are available. The deformation, rotational response, pairing correlations
The coordinate space formulation of the Hartree-Fock-Bogoliubov (HFB) method enables self-consistent treatment of mean-field and pairing in weakly bound systems whose properties are affected by the particle continuum space. Of particular interest are
The location of the neutron drip line, currently known for only the lightest elements, remains a fundamental question in nuclear physics. Its description is a challenge for microscopic nuclear energy density functionals, as it must take into account