ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic study of breakup effects on complete fusion at energies above the Coulomb barrier

120   0   0.0 ( 0 )
 نشر من قبل Shan-Gui Zhou
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A large number of complete fusion excitation functions of reactions including the breakup channel were measured in recent decades, especially in the last few years. It allows us to investigate the systematic behavior of the breakup effects on the complete fusion cross sections. To this end, we perform a systematic study of the breakup effects on the complete fusion cross sections at energies above the Coulomb barrier. The reduced fusion functions F(x) are compared with the universal fusion functions which are used as a uniform standard reference. The complete fusion cross sections at energies above the Coulomb barrier are suppressed by the breakup of projectiles. This suppression effect for reactions induced by the same projectile is independent of the target and mainly determined by the lowest energy breakup channel of the projectile. There holds a good exponential relation between the suppression factor and the energy corresponding to the lowest breakup threshold.



قيم البحث

اقرأ أيضاً

Complete fusion excitation functions of reactions involving breakup are studied by using the empirical coupled-channel (ECC) model with breakup effects considered. An exponential function with two parameters is adopted to describe the prompt-breakup probability in the ECC model. These two parameters are fixed by fitting the measured prompt-breakup probability or the complete fusion cross sections. The suppression of complete fusion at energies above the Coulomb barrier is studied by comparing the data with the predictions from the ECC model without the breakup channel considered. The results show that the suppression of complete fusion are roughly independent of the target for the reactions involving the same projectile.
We consider the influence of breakup channels on the complete fusion of weakly bound cluster-type systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent wi th recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the Dynamic Polarization Potential approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of $^7$Li followed by the breakup of $^6$Li.
We have performed CDCC calculations for collisions of $^{7}$Li projectiles on $^{59}$Co, $^{144}$Sm and $^{208}$Pb targets at near-barrier energies, to assess the importance of the Coulomb and the nuclear couplings in the breakup of $^{7}$Li, as well as the Coulomb-nuclear interference. We have also investigated scaling laws, expressing the dependence of the cross sections on the charge and the mass of the target. This work is complementary to the one previously reported by us on the breakup of $^{6}$Li. Here we explore the similarities and differences between the results for the two Lithium isotopes. The relevance of the Coulomb dipole strength at low energy for the two-cluster projectile is investigated in details.
Comparing the capture cross sections calculated without the breakup effect and experimental complete fusion cross sections, the breakup was analyzed in reactions with weakly bound projectiles $^{6,7,9}$Li, $^{9,11}$Be, and $^{6,8}$He. A trend of a sy stematic behavior for the complete fusion suppression as a function of the target charge and bombarding energy is not achieved. The quasielastic backscattering is suggested to be an useful tool to study the behavior of the breakup probability in reactions with weakly bound projectiles.
We investigate the nuclear and the Coulomb contributions to the breakup cross sections of $^6$Li in collisions with targets in different mass ranges. Comparing cross sections for different targets at collision energies corresponding to the same $E/V_ {mathrm{scriptscriptstyle B}}$, we obtain interesting scaling laws. First, we derive an approximate linear expression for the nuclear breakup cross section as a function of $A_{mathrm{% scriptscriptstyle T}}^{1/3}$. We then confirm the validity of this expression performing CDCC calculations. Scaling laws for the Coulomb breakup cross section are also investigated. In this case, our CDCC calculations indicate that this cross section has a linear dependence on the atomic number of the target. This behavior is explained by qualitative arguments. Our findings, which are consistent with previously obtained results for higher energies, are important when planning for experiments involving exotic weakly bound nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا