ترغب بنشر مسار تعليمي؟ اضغط هنا

In our previous arXiv papers (The Information and the Matter, v1, v5; more systematically the informational conception is presented in the paper The Information as Absolute, 2010) it was rigorously shown that Matter in our Universe - and Universe as a whole - are some informational systems (structures), which exist as uninterruptedly transforming [practically] infinitesimal sub-sets of the absolutely infinite and fundamental set Information. Such a conception allows not only to clear essentially a number of metaphysical and epistemological problems in philosophy but, besides, allows to suggest a reasonable physical model. Since Matter in Universe is an informational system where any interaction between Matters sub-structures, i.e. - particles and systems of the particles - happens always as an exchange by exclusively true information between these structures, the model is based on the conjecture that Matter is some analogue of computer. The conjecture, in turn, allows to introduce in the model the basic logical elements that constitute the material structures and support the informational exchange - i.e. the forces - between the structures. The model is experimentally testable and yet now makes be more clear a number of basic problems in special relativity, quantum mechanics, and, rather probably, in [now - in Newtonian] gravity.
A quantum two-level system with periodically modulated energy splitting could provide a minimal universal quantum heat machine. We present the experimental realization and the theoretical description of such a two-level system as an impurity electron spin in a silicon tunnel field-effect transistor. In the incoherent regime, the system can behave analogously to either an Otto heat engine or a refrigerator. The coherent regime could be described as a superposition of those two regimes, producing specific interference fringes in the observed source-drain current.
We investigate the Landau-Zener-Stuckelberg-Majorana interferometry of a superconducting qubit in a semi-infinite transmission line terminated by a mirror. The transmon-type qubit is at the node of the resonant electromagnetic (EM) field, hiding from the EM field. Mirror, mirror briefly describes this system, because the qubit acts as another mirror. We modulate the resonant frequency of the qubit by applying a sinusoidal flux pump. We probe the spectroscopy by measuring the reflection coefficient of a weak probe in the system. Remarkable interference patterns emerge in the spectrum, which can be interpreted as multi-photon resonances in the dressed qubit. Our calculations agree well with the experiments.
A periodically driven quantum system with avoided-level crossing experiences both non-adiabatic transitions and wave-function phase changes. These result in coherent interference fringes in the systems occupation probabilities. For qubits, with repel ling energy levels, such interference, named after Landau-Zener-Stuckelberg-Majorana, displays arc-shaped resonance lines. We demonstrate that in the case of a multi-level system with an avoided-level crossing of the two lower levels, the shape of the resonances can change from convex arcs to concave heart-shaped and harp-shaped resonance lines. In this way, the shape of such resonance fringes is defined by the whole spectrum, providing insight on the slow-frequency system spectroscopy. As a particular example, we consider this for valley-orbit silicon quantum dots.
We study quantum interference effects of a qubit whose energy levels are continuously modulated. The qubit is formed by an impurity electron spin in a silicon tunneling field-effect transistor, and it is read out by spin blockade in a double-dot conf iguration. The qubit energy levels are modulated via its gate-voltage-dependent g-factors, with either rectangular, sinusoidal, or ramp radio-frequency waves. The energy-modulated qubit is probed by the electron spin resonance. Our results demonstrate the potential of spin qubit interferometry implemented in a silicon device and operated at a relatively high temperature.
We study theoretically dynamics of a driven-dissipative qubit-resonator system. Specifically, a transmon qubit is coupled to a transmission-line resonator; this system is considered to be probed via a resonator, by means of either continuous or pulse d measurements. Analytical results obtained in the semiclassical approximation are compared with calculations in the semi-quantum theory as well as with the previous experiments. We demonstrate that the temperature dependence of the resonator frequency shift can be used for the system thermometry and that the dynamics, displaying pinched-hysteretic curve, can be useful for realization of memory devices, the quantum memcapacitors.
A quantum system can be driven by either sinusoidal, rectangular, or noisy signals. In the literature, these regimes are referred to as Landau-Zener-Stuckelberg-Majorana (LZSM) interferometry, latching modulation, and motional averaging, respectively . We demonstrate that these pronounced and interesting effects are also inherent in the dynamics of classical two-state systems. We discuss how such classical systems are realized using either mechanical, electrical, or optical resonators. In addition to the fundamental interest of such dynamical phenomena linking classical and quantum physics, we believe that these are attractive for the classical analogue simulation of quantum systems.
The possibility of in-memory computing with volatile memristive devices, namely, memristors requiring a power source to sustain their memory, is demonstrated. We have adopted a hysteretic graphene-based field emission structure as a prototype of vola tile memristor, which is characterized by a non-pinched hysteresis loop. Memristive model of the structure is developed and used to simulate a polymorphic circuit implementing in-memory computing gates such as the material implication. Specific regions of parameter space realizing useful logic functions are identified. Our results are applicable to other realizations of volatile memory devices.
Frequency generators are widely used in electronics. Here, we report the design and experimental realization of a memristive frequency generator employing a unique combination of only digital logic gates, a single-supply voltage and a realistic thres hold-type memristive device. In our circuit, the oscillator frequency and duty cycle are defined by the switching characteristics of the memristive device and external resistors. We demonstrate the circuit operation both experimentally, using a memristor emulator, and theoretically, using a model memristive device with threshold. Importantly, nanoscale realizations of memristive devices offer small-size alternatives to conventional quartz-based oscillators. In addition, the suggested approach can be used for mimicking some cyclic (Sisyphus) processes in nature, such as dripping ants or drops from leaky faucets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا