ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-frequency spectroscopy for quantum multi-level systems

98   0   0.0 ( 0 )
 نشر من قبل Sergey Shevchenko N.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A periodically driven quantum system with avoided-level crossing experiences both non-adiabatic transitions and wave-function phase changes. These result in coherent interference fringes in the systems occupation probabilities. For qubits, with repelling energy levels, such interference, named after Landau-Zener-Stuckelberg-Majorana, displays arc-shaped resonance lines. We demonstrate that in the case of a multi-level system with an avoided-level crossing of the two lower levels, the shape of the resonances can change from convex arcs to concave heart-shaped and harp-shaped resonance lines. In this way, the shape of such resonance fringes is defined by the whole spectrum, providing insight on the slow-frequency system spectroscopy. As a particular example, we consider this for valley-orbit silicon quantum dots.



قيم البحث

اقرأ أيضاً

We study a two-level impurity coupled locally to a quantum gas on an optical lattice. For state-dependent interactions between the impurity and the gas, we show that its evolution encodes information on the local excitation spectrum of gas at the cou pling site. Based on this, we design a nondestructive method to probe the systems excitations in a broad range of energies by measuring the state of the probe using standard atom optics methods. We illustrate our findings with numerical simulations for quantum lattice systems, including realistic dephasing noise on the quantum probe, and discuss practical limits on the probe dephasing rate to fully resolve both regular and chaotic spectra.
We report Ramsey interference in the excitonic population of a negatively charged quantum dot revealing the coherence of the state in the limit where radiative decay is dominant. Our experiments show that the decay time of the Ramsey interference is limited by the spectral width of the transition. Applying a vertical magnetic field induces Zeeman split transitions that can be addressed by changing the laser detuning to reveal 2, 3 and 4 level system behaviour. We show that under finite field the phase-sensitive control of two optical pulses from a single laser can be used to prepare both population and spin qubits simultaneously.
Low-dimensional wide bandgap semiconductors open a new playing field in quantum optics using sub-bandgap excitation. In this field, hexagonal boron nitride (h-BN) has been reported to host single quantum emitters (QEs), linking QE density to perimete rs. Furthermore, curvature/perimeters in transition metal dichalcogenides (TMDCs) have demonstrated a key role in QE formation. We investigate a curvature-abundant BN system - quasi one-dimensional BN nanotubes (BNNTs) fabricated via a catalyst-free method. We find that non-treated BNNT is an abundant source of stable QEs and analyze their emission features down to single nanotubes, comparing dispersed/suspended material. Combining high spatial resolution of a scanning electron microscope, we categorize and pin-point emission origin to a scale of less than 20 nm, giving us a one-to-one validation of emission source with dimensions smaller than the laser excitation wavelength, elucidating nano-antenna effects. Two emission origins emerge: hybrid/entwined BNNT. By artificially curving h-BN flakes, similar QE spectral features are observed. The impact on emission of solvents used in commercial products and curved regions is also demonstrated. The out of the box availability of QEs in BNNT, lacking processing contamination, is a milestone for unraveling their atomic features. These findings open possibilities for precision engineering of QEs, puts h-BN under a similar umbrella of TMDCs QEs and provides a model explaining QEs spatial localization/formation using electron/ion irradiation and chemical etching.
The application of magnetic resonance (MR) spectroscopy at progressively smaller length scales may eventually permit chemical imaging of spins at the surfaces of materials and biological complexes. In particular, the negatively charged nitrogen-vacan cy (NV-) centre in diamond has been exploited as an optical transducer for nanoscale nuclear magnetic resonance. However, the spectra of detected spins are generally broadened by their interaction with proximate paramagnetic NV- centres through coherent and incoherent mechanisms. Here we demonstrate a detection technique that can resolve the spectra of electron spins coupled to NV- centres, namely substitutional nitrogen (NS) and neutral nitrogen-vacancy (NV0) centres in diamond, through optically detected cross-relaxation. The hyperfine spectra of these spins are a unique chemical identifier, suggesting the possibility, in combination with recent results in diamonds harbouring shallow NV- implants, that the spectra of spins external to the diamond can be similarly detected.
System noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noise affecting a quantum system, they generally cannot distinguish betwe en the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances. First, our protocol extends the spectral range of weakly anharmonic qubit spectrometers beyond the present limitations set by their lack of strong anharmonicity. Second, the additional information gained from probing the higher-excited levels enables us to identify and distinguish contributions from different underlying noise mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا