ترغب بنشر مسار تعليمي؟ اضغط هنا

A fundamental result by Gromov and Thurston asserts that, if M is a closed hyperbolic n-manifold, then the simplicial volume |M| of M is equal to vol(M)/v_n, where v_n is a constant depending only on the dimension of M. The same result also holds for complete finite-volume hyperbolic manifolds without boundary, while Jungreis proved that the ratio vol(M)/|M| is strictly smaller than v_n if M is compact with non-empty geodesic boundary. We prove here a quantitative version of Jungreis result for n>3, which bounds from below the ratio |M|/vol(M) in terms of the ratio between the volume of the boundary of M and the volume of M. As a consequence, we show that a sequence {M_i} of compact hyperbolic n-manifolds with geodesic boundary is such that the limit of vol(M_i)/|M_i| equals v_n if and only if the volume of the boundary of M_i grows sublinearly with respect to the volume of the boundary of M_i. We also provide estimates of the simplicial volume of hyperbolic manifolds with geodesic boundary in dimension three.
We define a notion of semi-conjugacy between orientation-preserving actions of a group on the circle, which for fixed point free actions coincides with a classical definition of Ghys. We then show that two circle actions are semi-conjugate if and onl y if they have the same bounded Euler class. This settles some existing confusion present in the literature.
Measure homology was introduced by Thurston in his notes about the geometry and topology of 3-manifolds, where it was exploited in the computation of the simplicial volume of hyperbolic manifolds. Zastrow and Hansen independently proved that there ex ists a canonical isomorphism between measure homology and singular homology (on the category of CW-complexes), and it was then shown by Loeh that, in the absolute case, such isomorphism is in fact an isometry with respect to the L^1-seminorm on singular homology and the total variation seminorm on measure homology. Loehs result plays a fundamental role in the use of measure homology as a tool for computing the simplicial volume of Riemannian manifolds. This paper deals with an extension of Loehs result to the relative case. We prove that relative singular homology and relative measure homology are isometrically isomorphic for a wide class of topological pairs. Our results can be applied for instance in computing the simplicial volume of Riemannian manifolds with boundary. Our arguments are based on new results about continuous (bounded) cohomology of topological pairs, which are probably of independent interest.
Let n>2 and let M be an orientable complete finite volume hyperbolic n-manifold with (possibly empty) geodesic boundary having Riemannian volume vol(M) and simplicial volume ||M||. A celebrated result by Gromov and Thurston states that if M has empty boundary then the ratio between vol(M) and ||M|| is equal to v_n, where v_n is the volume of the regular ideal geodesic n-simplex in hyperbolic n-space. On the contrary, Jungreis and Kuessner proved that if the boundary of M is non-empty, then such a ratio is strictly less than v_n. We prove here that for every a>0 there exists k>0 (only depending on a and n) such that if the ratio between the volume of the boundary of M and the volume of M is less than k, then the ratio between vol(M) and ||M|| is greater than v_n-a. As a consequence we show that for every a>0 there exists a compact orientable hyperbolic n-manifold M with non-empty geodesic boundary such that the ratio between vol(M) and ||M|| is greater than v_n-a. Our argument also works in the case of empty boundary, thus providing a somewhat new proof of the proportionality principle for non-compact finite-volume hyperbolic n-manifolds without boundary.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا