ترغب بنشر مسار تعليمي؟ اضغط هنا

Relative measure homology and continuous bounded cohomology of topological pairs

153   0   0.0 ( 0 )
 نشر من قبل Roberto Frigerio
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Measure homology was introduced by Thurston in his notes about the geometry and topology of 3-manifolds, where it was exploited in the computation of the simplicial volume of hyperbolic manifolds. Zastrow and Hansen independently proved that there exists a canonical isomorphism between measure homology and singular homology (on the category of CW-complexes), and it was then shown by Loeh that, in the absolute case, such isomorphism is in fact an isometry with respect to the L^1-seminorm on singular homology and the total variation seminorm on measure homology. Loehs result plays a fundamental role in the use of measure homology as a tool for computing the simplicial volume of Riemannian manifolds. This paper deals with an extension of Loehs result to the relative case. We prove that relative singular homology and relative measure homology are isometrically isomorphic for a wide class of topological pairs. Our results can be applied for instance in computing the simplicial volume of Riemannian manifolds with boundary. Our arguments are based on new results about continuous (bounded) cohomology of topological pairs, which are probably of independent interest.



قيم البحث

اقرأ أيضاً

We show that the isomorphism induced by the inclusion of pairs $(X,emptyset)subset (X,Y)$ between the relative bounded cohomology of $(X,Y)$ and the bounded cohomology of $X$ is isometric in degree at least 2 if the fundamental group of each connecte d component of $Y$ is amenable. As an application we provide a self-contained proof of Gromov Equivalence theorem and a generalization of a result of Fujiwara and Manning on the simplicial volume of generalized Dehn fillings.
143 - Maysam Maysami Sadr 2019
In this short note, we give some new results on continuous bounded cohomology groups of topological semigroups with values in complex field. We show that the second continuous bounded cohomology group of a compact metrizable semigroup, is a Banach sp ace. Also, we study cohomology groups of amenable topological semigroups, and we show that cohomology groups of rank greater than one of a compact left or right amenable semigroup, are trivial. Also, we give some examples and applications about topological lattices.
164 - Greg Friedman 2019
We indicate two short proofs of the Goresky-MacPherson topological invariance of intersection homology. One proof is very short but requires the Goresky-MacPherson support and cosupport axioms; the other is slightly longer but does not require these axioms and so is adaptable to more general perversities.
175 - Eaman Eftekhary 2013
We show that if a prime homology sphere has the same Floer homology as the standard three-sphere, it does not contain any incompressible tori.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا