We define a notion of semi-conjugacy between orientation-preserving actions of a group on the circle, which for fixed point free actions coincides with a classical definition of Ghys. We then show that two circle actions are semi-conjugate if and only if they have the same bounded Euler class. This settles some existing confusion present in the literature.
We exhibit a closed aspherical 5-manifold of nonpositive curvature that fibers over a circle whose fundamental group is hyperbolic relative to abelian subgroups such that the fiber is a closed aspherical 4-manifold whose fundamental group is not hyperbolic relative to abelian subgroups.
We show that the identity component of the group of diffeomorphisms of a closed oriented surface of positive genus admits many unbounded quasi-morphisms. As a corollary, we also deduce that this group is not uniformly perfect and its fragmentation no
rm is unbounded, answering a question of Burago--Ivanov--Polterovich. As a key tool we construct a hyperbolic graph on which these groups act, which is the analog of the curve graph for the mapping class group.
Recently a new class of critical points, termed as {sl perpetual points}, where acceleration becomes zero but the velocity remains non-zero, is observed in nonlinear dynamical systems. In this work we show whether a transformation also maps the perpe
tual points to another system or not. We establish mathematically that a linearly transformed system is topologicaly conjugate, and hence does map the perpetual points. However, for a nonlinear transformation, various other possibilities are also discussed. It is noticed that under a linear diffeomorphic transformation, perpetual points are mapped, and accordingly, eigenvalues are preserved.
We prove that rationally essential manifolds with suitably large fundamental groups do not admit any maps of non-zero degree from products of closed manifolds of positive dimension. Particular examples include all manifolds of non-positive sectional
curvature of rank one and all irreducible locally symmetric spaces of non-compact type. For closed manifolds from certain classes, say non-positively curved ones, or certain surface bundles over surfaces, we show that they do admit maps of non-zero degree from non-trivial products if and only if they are virtually diffeomorphic to products.
We prove that any arithmetic hyperbolic $n$-manifold of simplest type can either be geodesically embedded into an arithmetic hyperbolic $(n+1)$-manifold or its universal $mathrm{mod}~2$ Abelian cover can.