ﻻ يوجد ملخص باللغة العربية
A fundamental result by Gromov and Thurston asserts that, if M is a closed hyperbolic n-manifold, then the simplicial volume |M| of M is equal to vol(M)/v_n, where v_n is a constant depending only on the dimension of M. The same result also holds for complete finite-volume hyperbolic manifolds without boundary, while Jungreis proved that the ratio vol(M)/|M| is strictly smaller than v_n if M is compact with non-empty geodesic boundary. We prove here a quantitative version of Jungreis result for n>3, which bounds from below the ratio |M|/vol(M) in terms of the ratio between the volume of the boundary of M and the volume of M. As a consequence, we show that a sequence {M_i} of compact hyperbolic n-manifolds with geodesic boundary is such that the limit of vol(M_i)/|M_i| equals v_n if and only if the volume of the boundary of M_i grows sublinearly with respect to the volume of the boundary of M_i. We also provide estimates of the simplicial volume of hyperbolic manifolds with geodesic boundary in dimension three.
The Nielsen Realization problem asks when the group homomorphism from Diff(M) to pi_0 Diff(M) admits a section. For M a closed surface, Kerckhoff proved that a section exists over any finite subgroup, but Morita proved that if the genus is large enou
We study the Seiberg-Witten invariant $lambda_{rm{SW}} (X)$ of smooth spin $4$-manifolds $X$ with integral homology of $S^1times S^3$ defined by Mrowka, Ruberman, and Saveliev as a signed count of irreducible monopoles amended by an index-theoretic c
Birman-Menasco proved that there are finitely many knots having a given genus and braid index. We give a quantitative version of Birman-Menasco finiteness theorem, an estimate of the crossing number of knots in terms of genus and braid index. This ha
We study the topology of the space of positive scalar curvature metrics on high dimensional spheres and other spin manifolds. Our main result provides elements of infinite order in higher homotopy and homology groups of these spaces, which, in contra
Heegaard splittings and Heegaard diagrams of a closed 3-manifold M are translated into the language of Morse functions with Morse-Smale pseudo-gradients defined on M. We make use in a very simple setting of techniques which Jean Cerf developed for so