ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - Brandon Miller 2015
Reliable low-latency gravitational wave parameter estimation is essential to target limited electromagnetic followup facilities toward astrophysically interesting and electromagnetically relevant sources of gravitational waves. In this study, we exam ine the tradeoff between speed and accuracy. Specifically, we estimate the astrophysical relevance of systematic errors in the posterior parameter distributions derived using a fast-but-approximate waveform model, SpinTaylorF2 (STF2), in parameter estimation with lalinference_mcmc. Though efficient, the STF2 approximation to compact binary inspiral employs approximate kinematics (e.g., a single spin) and an approximate waveform (e.g., frequency domain versus time domain). More broadly, using a large astrophysically-motivated population of generic compact binary merger signals, we report on the effectualness and limitations of this single-spin approximation as a method to infer parameters of generic compact binary sources. For most low-mass compact binary sources, we find that the STF2 approximation estimates compact binary parameters with biases comparable to systematic uncertainties in the waveform. We illustrate by example the effect these systematic errors have on posterior probabilities most relevant to low-latency electromagnetic followup: whether the secondary is has a mass consistent with a neutron star; whether the masses, spins, and orbit are consistent with that neutron stars tidal disruption; and whether the binarys angular momentum axis is oriented along the line of sight.
70 - E. Ochsner 2014
Precessing black hole-neutron star (BH-NS) binaries produce a rich gravitational wave signal, encoding the binarys nature and inspiral kinematics. Using the lalinference_mcmc Markov-chain Monte Carlo parameter estimation code, we use two fiducial exa mples to illustrate how the geometry and kinematics are encoded into the modulated gravitational wave signal, using coordinates well-adapted to precession. Even for precessing binaries, we show the performance of detailed parameter estimation can be estimated by effective estimates: comparisons of a prototype signal with its nearest neighbors, adopting a fixed sky location and idealized two-detector network. We use detailed and effective approaches to show higher harmonics provide nonzero but small local improvement when estimating the parameters of precessing BH-NS binaries. That said, we show higher harmonics can improve parameter estimation accuracy for precessing binaries ruling out approximately-degenerate source orientations. Our work illustrates quantities gravitational wave measurements can provide, such as reliable component masses and the precise orientation of a precessing short gamma ray burst progenitor relative to the line of sight. Effective estimates may provide a simple way to estimate trends in the performance of parameter estimation for generic precessing BH-NS binaries in next-generation detectors. For example, our results suggest that the orbital chirp rate, precession rate, and precession geometry are roughly-independent observables, defining natural variables to organize correlations in the high-dimensional BH-NS binary parameter space.
92 - R. OShaughnessy 2013
Using the texttt{lalinference} Markov-chain Monte Carlo parameter estimation code, we examine two distinct nonprecessing black hole-neutron star (BH-NS) binaries with and without higher-order harmonics. Our simulations suggest that higher harmonics p rovide a minimal amount of additional information, principally about source geometry. Higher harmonics do provide disproportionately more information than expected from the signal power. Our results compare favorably to the effective Fisher matrix approach. Extrapolating using analytic scalings, we expect higher harmonics will provide little new information about nonprecessing BH-NS binaries at the signal amplitudes expected for the first few detections. Any study of subdominant degrees of freedom in gravitational wave astronomy can adopt the tools presented here ($V/V_{rm prior}$ and $D_{KL}$) to assess whether new physics is accessible (e.g., modifications of gravity; spin-orbit misalignment) and if so precisely what information those new parameters provide. For astrophysicists, we provide a concrete illustration of how well parameters of a BH-NS binary can be measured, relevant to the astrophysical interpretation of coincident EM and GW events (e.g., short GRBs). For our fiducial initial-detector example, the individual masses can be determined to lie between $7.11-11.48 M_odot$ and $1.77-1.276M_odot$ at greater than 99% confidence, accounting for unknown BH spin. Assuming comparable control over waveform systematics, future measurements of BH-NS binaries can constrain the BH and perhaps NS mass distributions.
In coming years, gravitational wave detectors should find black hole-neutron star binaries, potentially coincident with astronomical phenomena like short GRBs. These binaries are expected to precess. Gravitational wave science requires a tractable mo del for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations (e.g., a Fisher matrix) with easily-interpreted results. We have verified that for generic BH-NS binaries, our model agress with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here [and provided in full online] allow higher accuracy and error estimates.
118 - Jim Healy 2013
Previous analytic and numerical calculations suggest that, at each instant, the emission from a precessing black hole binary closely resembles the emission from a nonprecessing analog. In this paper we quantitatively explore the validity and limitati ons of that correspondence, extracting the radiation from a large collection of roughly two hundred generic black hole binary merger simulations both in the simulation frame and in a corotating frame that tracks precession. To a first approximation, the corotating-frame waveforms resemble nonprecessing analogs, based on similarity over a band-limited frequency interval defined using a fiducial detector (here, advanced LIGO) and the sources total mass $M$. By restricting attention to masses $Min 100, 1000 M_odot$, we insure our comparisons are sensitive only to our simulated late-time inspiral, merger, and ringdown signals. In this mass region, every one of our precessing simulations can be fit by some physically similar member of the texttt{IMRPhenomB} phenomenological waveform family to better than 95%; most fit significantly better. The best-fit parameters at low and high mass correspond to natural physical limits: the pre-merger orbit and post-merger perturbed black hole. Our results suggest that physically-motivated synthetic signals can be derived by viewing radiation from suitable nonprecessing binaries in a suitable nonintertial reference frame. While a good first approximation, precessing systems have degrees of freedom (i.e., the transverse spins) which a nonprecessing simulation cannot reproduce. We quantify the extent to which these missing degrees of freedom limit the utility of synthetic precessing signals for detection and parameter estimation.
67 - R. OShaughnessy 2012
The short gravitational wave signal from the merger of compact binaries encodes a surprising amount of information about the strong-field dynamics of merger into frequencies accessible to ground-based interferometers. In this paper we describe a prev iously-unknown precession of the peak emission direction with time, both before and after the merger, about the total angular momentum direction. We demonstrate the gravitational wave polarization encodes the orientation of this direction to the line of sight. We argue the effects of polarization can be estimated nonparametrically, directly from the gravitational wave signal as seen along one line of sight, as a slowly-varying feature on top of a rapidly-varying carrier. After merger, our results can be interpreted as a coherent excitation of quasinormal modes of different angular orders, a superposition which naturally precesses and modulates the line-of-sight amplitude. Recent analytic calculations have arrived at a similar geometric interpretation. We suspect the line-of-sight polarization content will be a convenient observable with which to define new high-precision tests of general relativity using gravitational waves. Additionally, as the nonlinear merger process seeds the initial coherent perturbation, we speculate the amplitude of this effect provides a new probe of the strong-field dynamics during merger. To demonstrate the ubiquity of the effects we describe, we summarize the post-merger evolution of 104 generic precessing binary mergers. Finally, we provide estimates for the detectable impacts of precession on the waveforms from high-mass sources. These expressions may identify new precessing binary parameters whose waveforms are dissimilar from the existing sample.
Within the next decade, ground based gravitational wave detectors are in principle capable of determining the compact object merger rate per unit volume of the local universe to better than 20% with more than 30 detections. We argue that the stellar models are sensitive to heterogeneities (in age and metallicity at least) in such a way that the predicted merger rates are subject to an additional 30-50% systematic errors unless these heterogeneities are taken into account. Without adding new electromagnetic constraints on massive binary evolution or relying on more information from each merger (e.g., binary masses and spins), as few as the $simeq 5$ merger detections could exhaust the information available in a naive comparison to merger rate predictions. As a concrete example, we use a nearby-universe catalog to demonstrate that no one tracer of stellar content can constrain merger rates without introducing a systematic error of order $O(30%)$ at 90% confidence. More generally, we argue that theoretical binary evolution can depend sufficiently sensitively on star-forming conditions -- even assuming no uncertainty in binary evolution model -- that the emph{distribution} of star forming conditions must be incorporated to reduce the systematic error in merger rate predictions below roughly 40%. (Abridged)
114 - R. OShaughnessy 2012
Being able to measure each mergers sky location, distance, component masses, and conceivably spins, ground-based gravitational-wave detectors will provide a extensive and detailed sample of coalescing compact binaries (CCBs) in the local and, with th ird-generation detectors, distant universe. These measurements will distinguish between competing progenitor formation models. In this paper we develop practical tools to characterize the amount of experimentally accessible information available, to distinguish between two a priori progenitor models. Using a simple time-independent model, we demonstrate the information content scales strongly with the number of observations. The exact scaling depends on how significantly mass distributions change between similar models. We develop phenomenological diagnostics to estimate how many models can be distinguished, using first-generation and future instruments. Finally, we emphasize that multi-observable distributions can be fully exploited only with very precisely calibrated detectors, search pipelines, parameter estimation, and Bayesian model inference.
Current searches for compact binary mergers by ground-based gravitational-wave detectors assume for simplicity the two bodies are not spinning. If the binary contains compact objects with significant spin, then this can reduce the sensitivity of thes e searches, particularly for black hole--neutron star binaries. In this paper we investigate the effect of neglecting precession on the sensitivity of searches for spinning binaries using non-spinning waveform models. We demonstrate that in the sensitive band of Advanced LIGO, the angle between the binarys orbital angular momentum and its total angular momentum is approximately constant. Under this emph{constant precession cone} approximation, we show that the gravitational-wave phasing is modulated in two ways: a secular increase of the gravitational-wave phase due to precession and an oscillation around this secular increase. We show that this secular evolution occurs in precisely three ways, corresponding to physically different apparent evolutions of the binarys precession about the line of sight. We estimate the best possible fitting factor between emph{any} non-precessing template model and a single precessing signal, in the limit of a constant precession cone. Our closed form estimate of the fitting-factor depends only the geometry of the in-band precession cone; it does not depend explicitly on binary parameters, detector response, or details of either signal model. The precessing black hole--neutron star waveforms least accurately matched by nonspinning waveforms correspond to viewing geometries where the precession cone sweeps the orbital plane repeatedly across the line of sight, in an unfavorable polarization alignment.
68 - R. OShaughnessy 2012
The gravitational wave signature emitted from a merging binary depends on the orientation of an observer relative to the binary. Previous studies suggest that emission along the total initial or total final angular momenta leads to both the strongest and simplest signal from a precessing compact binary. In this paper we describe a concrete counterexample: a binary with $m_1/m_2=4$, $a_1=0.6 hat{x} = -a_2$, placed in orbit in the x,y plane. We extract the gravitational wave emission along several proposed emission directions, including the initial (Newtonian) orbital angular momentum; the final (~ initial) total angular momentum; and the dominant principal axis of $<L_a L_b>_M$. Using several diagnostics, we show that the suggested preferred directions are not representative. For example, only for a handful of other directions (< 15%) will the gravitational wave signal have comparable shape to the one extracted along each of these fiducial directions, as measured by a generalized overlap (>0.95). We conclude that the information available in just one direction (or mode) does not adequately encode the complexity of orientation-dependent emission for even short signals from merging black hole binaries. Future investigations of precessing, unequal-mass binaries should carefully explore and model their orientation-dependent emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا