ﻻ يوجد ملخص باللغة العربية
Within the next decade, ground based gravitational wave detectors are in principle capable of determining the compact object merger rate per unit volume of the local universe to better than 20% with more than 30 detections. We argue that the stellar models are sensitive to heterogeneities (in age and metallicity at least) in such a way that the predicted merger rates are subject to an additional 30-50% systematic errors unless these heterogeneities are taken into account. Without adding new electromagnetic constraints on massive binary evolution or relying on more information from each merger (e.g., binary masses and spins), as few as the $simeq 5$ merger detections could exhaust the information available in a naive comparison to merger rate predictions. As a concrete example, we use a nearby-universe catalog to demonstrate that no one tracer of stellar content can constrain merger rates without introducing a systematic error of order $O(30%)$ at 90% confidence. More generally, we argue that theoretical binary evolution can depend sufficiently sensitively on star-forming conditions -- even assuming no uncertainty in binary evolution model -- that the emph{distribution} of star forming conditions must be incorporated to reduce the systematic error in merger rate predictions below roughly 40%. (Abridged)
We revisit the merger rate for Galactic double neutron star (DNS) systems in light of recent observational insight into the longitudinal and latitudinal beam shape of the relativistic DNS PSR J1906$+$0746. Due to its young age and its relativistic or
The long wait for the detection of merging black hole -- neutron star (BH--NS) binaries is finally over with the announcement by the LIGO/Virgo/Kagra collaboration of GW200105 and GW200115. Remarkably, the primary of GW200115 has a negative spin proj
We compare multi-wavelength SFR indicators out to z~3 in GOODS-South. Our analysis uniquely combines U-to-8um photometry from FIREWORKS, MIPS 24um and PACS 70, 100, and 160um photometry from the PEP survey, and Ha spectroscopy from the SINS survey. We describe a set of
Galaxy mergers and interactions are an integral part of our basic understanding of how galaxies grow and evolve over time. However, the effect that galaxy mergers have on star formation rates (SFR) is contested, with observations of galaxy mergers sh
We investigate the consequences of applying different star formation laws in the galaxy formation model GALFORM. Three broad star formation laws are implemented: the empirical relations of Kennicutt and Schmidt and Blitz & Rosolowsky and the theoreti