ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of star formation inhomogeneities on merger rates and interpretation of LIGO results

247   0   0.0 ( 0 )
 نشر من قبل Richard O'Shaughnessy
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the next decade, ground based gravitational wave detectors are in principle capable of determining the compact object merger rate per unit volume of the local universe to better than 20% with more than 30 detections. We argue that the stellar models are sensitive to heterogeneities (in age and metallicity at least) in such a way that the predicted merger rates are subject to an additional 30-50% systematic errors unless these heterogeneities are taken into account. Without adding new electromagnetic constraints on massive binary evolution or relying on more information from each merger (e.g., binary masses and spins), as few as the $simeq 5$ merger detections could exhaust the information available in a naive comparison to merger rate predictions. As a concrete example, we use a nearby-universe catalog to demonstrate that no one tracer of stellar content can constrain merger rates without introducing a systematic error of order $O(30%)$ at 90% confidence. More generally, we argue that theoretical binary evolution can depend sufficiently sensitively on star-forming conditions -- even assuming no uncertainty in binary evolution model -- that the emph{distribution} of star forming conditions must be incorporated to reduce the systematic error in merger rate predictions below roughly 40%. (Abridged)

قيم البحث

اقرأ أيضاً

104 - Kathrin Grunthal 2021
We revisit the merger rate for Galactic double neutron star (DNS) systems in light of recent observational insight into the longitudinal and latitudinal beam shape of the relativistic DNS PSR J1906$+$0746. Due to its young age and its relativistic or bit, the pulsar contributes significantly to the estimate of the joint Galactic merger rate. We follow previous analyses by modelling the underlying pulsar population of nine merging DNS systems and study the impact and resulting uncertainties when replacing simplifying assumptions made in the past with actual knowledge of the beam shape, its extent and the viewing geometry. We find that the individual contribution of PSR J1906$+$0746 increases to $R = 6^{+28}_{-5}$ Myr$^{-1}$ although the values is still consistent with previous estimates given the uncertainties. We also compute contributions to the merger rates from the other DNS systems by applying a generic beam shape derived from that of PSR J1906+0746, evaluating the impact of previous assumptions. We derive a joint Galactic DNS merger rate of $R^{rm{gen}}_{rm{MW}} = 32^{+19}_{-9}$Myr$^{-1}$, leading to a LIGO detection rate of ${R}^{rm{gen}}_{rm{LIGO}} = 3.5^{+2.1}_{-1.0}$Myr$^{-1}$ (90% conf. limit), considering the upcoming O3 sensitivity of LIGO. As these values are in good agreement with previous estimates, we conclude that the method of estimating the DNS merger and LIGO detection rates via the study of the radio pulsar DNS population is less prone to systematic uncertainties than previously thought.
The long wait for the detection of merging black hole -- neutron star (BH--NS) binaries is finally over with the announcement by the LIGO/Virgo/Kagra collaboration of GW200105 and GW200115. Remarkably, the primary of GW200115 has a negative spin proj ection onto the orbital angular momentum, with about $90%$ probability. Merging BH--NS binaries are expected to form mainly through the evolution of massive binary stars in the field, since their dynamical formation in dense star clusters is strongly suppressed by mass segregation. In this paper, we carry out a systematic statistical study of the binary stars that evolve to form a BH--NS binary, considering different metallicities and taking into account the uncertainties on the natal kick distributions for BHs and NSs and on the common envelope phase of binary evolution. Under the assumption that the initial stellar spins are aligned with the binary angular momentum, we show that both large natal kicks ($gtrsim 150$ km s$^{-1}$) and high efficiencies for common envelope ejection are required to simultaneously explain the inferred high merger rates and the large spin-orbit misalignment of GW200115.
We compare multi-wavelength SFR indicators out to z~3 in GOODS-South. Our analysis uniquely combines U-to-8um photometry from FIREWORKS, MIPS 24um and PACS 70, 100, and 160um photometry from the PEP survey, and Ha spectroscopy from the SINS survey. We describe a set of
Galaxy mergers and interactions are an integral part of our basic understanding of how galaxies grow and evolve over time. However, the effect that galaxy mergers have on star formation rates (SFR) is contested, with observations of galaxy mergers sh owing reduced, enhanced and highly enhanced star formation. We aim to determine the effect of galaxy mergers on the SFR of galaxies using statistically large samples of galaxies, totalling over 200,000, over a large redshift range, 0.0 to 4.0. We train and use convolutional neural networks to create binary merger identifications (merger or non-merger) in the SDSS, KiDS and CANDELS imaging surveys. We then compare the galaxy main sequence subtracted SFR of the merging and non-merging galaxies to determine what effect, if any, a galaxy merger has on SFR. We find that the SFR of merging galaxies are not significantly different from the SFR of non-merging systems. The changes in the average SFR seen in the star forming population when a galaxy is merging are small, of the order of a factor of 1.2. However, the higher the SFR above the galaxy main sequence, the higher the fraction of galaxy mergers. Galaxy mergers have little effect on the SFR of the majority of merging galaxies compared to the non-merging galaxies. The typical change in SFR is less than 0.1~dex in either direction. Larger changes in SFR can be seen but are less common. The increase in merger fraction as the distance above the galaxy main sequence increases demonstrates that galaxy mergers can induce starbursts.
We investigate the consequences of applying different star formation laws in the galaxy formation model GALFORM. Three broad star formation laws are implemented: the empirical relations of Kennicutt and Schmidt and Blitz & Rosolowsky and the theoreti cal model of Krumholz, McKee & Tumlinson. These laws have no free parameters once calibrated against observations of the star formation rate (SFR) and gas surface density in nearby galaxies. We start from published models, and investigate which observables are sensitive to a change in the star formation law, without altering any other model parameters. We show that changing the star formation law (i) does not significantly affect either the star formation history of the universe or the galaxy luminosity functions in the optical and near-IR, due to an effective balance between the quiescent and burst star formation modes; (ii) greatly affects the cold gas contents of galaxies; (iii) changes the location of galaxies in the SFR versus stellar mass plane, so that a second sequence of passive galaxies arises, in addition to the known active sequence. We show that this plane can be used to discriminate between the star formation laws.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا