ترغب بنشر مسار تعليمي؟ اضغط هنا

A single-spin precessing gravitational wave in closed form

222   0   0.0 ( 0 )
 نشر من قبل Richard O'Shaughnessy
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In coming years, gravitational wave detectors should find black hole-neutron star binaries, potentially coincident with astronomical phenomena like short GRBs. These binaries are expected to precess. Gravitational wave science requires a tractable model for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations (e.g., a Fisher matrix) with easily-interpreted results. We have verified that for generic BH-NS binaries, our model agress with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here [and provided in full online] allow higher accuracy and error estimates.



قيم البحث

اقرأ أيضاً

131 - Brandon Miller 2015
Reliable low-latency gravitational wave parameter estimation is essential to target limited electromagnetic followup facilities toward astrophysically interesting and electromagnetically relevant sources of gravitational waves. In this study, we exam ine the tradeoff between speed and accuracy. Specifically, we estimate the astrophysical relevance of systematic errors in the posterior parameter distributions derived using a fast-but-approximate waveform model, SpinTaylorF2 (STF2), in parameter estimation with lalinference_mcmc. Though efficient, the STF2 approximation to compact binary inspiral employs approximate kinematics (e.g., a single spin) and an approximate waveform (e.g., frequency domain versus time domain). More broadly, using a large astrophysically-motivated population of generic compact binary merger signals, we report on the effectualness and limitations of this single-spin approximation as a method to infer parameters of generic compact binary sources. For most low-mass compact binary sources, we find that the STF2 approximation estimates compact binary parameters with biases comparable to systematic uncertainties in the waveform. We illustrate by example the effect these systematic errors have on posterior probabilities most relevant to low-latency electromagnetic followup: whether the secondary is has a mass consistent with a neutron star; whether the masses, spins, and orbit are consistent with that neutron stars tidal disruption; and whether the binarys angular momentum axis is oriented along the line of sight.
Estimates of the source parameters of gravitational-wave (GW) events produced by compact binary mergers rely on theoretical models for the GW signal. We present the first frequency-domain model for inspiral, merger and ringdown of the GW signal from precessing binary-black-hole systems that also includes multipoles beyond the leading-order quadrupole. Our model, {tt PhenomPv3HM}, is a combination of the higher-multipole non-precessing model {tt PhenomHM} and the spin-precessing model {tt PhenomPv3} that includes two-spin precession via a dynamical rotation of the GW multipoles. We validate the new model by comparing to a large set of precessing numerical-relativity simulations and find excellent agreement across the majority of the parameter space they cover. For mass ratios $<5$ the mismatch improves, on average, from $sim6%$ to $sim 2%$ compared to {tt PhenomPv3} when we include higher multipoles in the model. However, we find mismatches $sim8%$ for the mass-ratio $6$ and highly spinning simulation. As a first application of the new model we have analysed the binary black hole event GW170729. We find larger values for the primary black hole mass of $58.25^{+11.73}_{-12.53} , M_odot$ (90% credible interval). The lower limit ($sim 46 , M_odot$) is comparable to the proposed maximum black hole mass predicted by different stellar evolution models due to the pulsation pair-instability supernova (PPISN) mechanism. If we assume that the primary ac{BH} in GW170729 formed through a PPISN then out of the four PPISN models we considered only the model of Woosley (2017) is consistent with our mass measurements at the 90% level.
The properties of precessing, coalescing binary black holes are presently inferred through comparison with two approximate models of compact binary coalescence. In this work we show these two models often disagree substantially when binaries have mod estly large spins ($agtrsim 0.4$) and modest mass ratios ($qgtrsim 2$). We demonstrate these disagreements using standard figures of merit and the parameters inferred for recent detections of binary black holes. By comparing to numerical relativity, we confirm these disagreements reflect systematic errors. We provide concrete examples to demonstrate that these systematic errors can significantly impact inferences about astrophysically significant binary parameters. For the immediate future, parameter inference for binary black holes should be performed with multiple models (including numerical relativity), and carefully validated by performing inference under controlled circumstances with similar synthetic events.
197 - Afura Taylor , Vijay Varma 2020
When two black holes merge, a tremendous amount of energy is released in the form of gravitational radiation in a short span of time, making such events among the most luminous phenomenon in the universe. Models that predict the peak luminosity of bl ack hole mergers are of interest to the gravitational wave community, with potential applications in tests of general relativity. We present a surrogate model for the peak luminosity that is directly trained on numerical relativity simulations of precessing binary black holes. Using Gaussian process regression, we interpolate the peak luminosity in the 7-dimensional parameter space of precessing binaries with mass ratios $qleq4$, and spin magnitudes $chi_1,chi_2leq0.8$. We demonstrate that our errors in estimating the peak luminosity are lower than those of existing fitting formulae by about an order of magnitude. In addition, we construct a model for the peak luminosity of aligned-spin binaries with mass ratios $qleq8$, and spin magnitudes $|chi_{1z}|,|chi_{2z}|leq0.8$. We apply our precessing model to infer the peak luminosity of the GW event GW190521, and find the results to be consistent with previous predictions.
The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars angu lar momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, $cmathbf{J}/GM^2$, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا