ﻻ يوجد ملخص باللغة العربية
Being able to measure each mergers sky location, distance, component masses, and conceivably spins, ground-based gravitational-wave detectors will provide a extensive and detailed sample of coalescing compact binaries (CCBs) in the local and, with third-generation detectors, distant universe. These measurements will distinguish between competing progenitor formation models. In this paper we develop practical tools to characterize the amount of experimentally accessible information available, to distinguish between two a priori progenitor models. Using a simple time-independent model, we demonstrate the information content scales strongly with the number of observations. The exact scaling depends on how significantly mass distributions change between similar models. We develop phenomenological diagnostics to estimate how many models can be distinguished, using first-generation and future instruments. Finally, we emphasize that multi-observable distributions can be fully exploited only with very precisely calibrated detectors, search pipelines, parameter estimation, and Bayesian model inference.
We estimate binary compact object merger detection rates for LIGO, including the binaries formed in ellipticals long ago. Specifically, we convolve hundreds of model realizations of elliptical- and spiral-galaxy population syntheses with a model for
We model the gravitational-wave background created by double compact objects from isolated binary evolution across cosmic time using the textbf{textit{StarTrack}} binary population code. We include population I/II stars as well as metal-free populati
This paper is the first in a set that analyses the covariance matrices of clustering statistics obtained from several approximate methods for gravitational structure formation. We focus here on the covariance matrices of anisotropic two-point correla
Significant human and observational resources have been dedicated to electromagnetic followup of gravitational-wave events detected by Advanced LIGO and Virgo. As the sensitivity of LIGO and Virgo improves, the rate of sources detected will increase.
We use the Fisher information matrix to investigate the angular resolution and luminosity distance uncertainty for coalescing binary neutron stars (BNSs) and neutron star-black hole binaries (NSBHs) detected by the third-generation (3G) gravitational