ترغب بنشر مسار تعليمي؟ اضغط هنا

The background induced by the high penetration power of the gamma radiation is the main limiting factor of the current Radio-guided surgery (RGS). To partially mitigate it, a RGS with beta+ emitting radio-tracers has been suggested in literature. H ere we propose the use of beta- emitting radio-tracers and beta- probes and discuss the advantage of this method with respect to the previously explored ones: the electron low penetration power allows for simple and versatile probes and could extend RGS to tumours for which background originating from nearby healthy tissue makes gamma probes less effective. We developed a beta- probe prototype and studied its performances on phantoms. By means of a detailed simulation we have also extrapolated the results to estimate the performances in a realistic case of meningioma, pathology which is going to be our first in-vivo test case. A good sensitivity to residuals down to 0.1ml can be reached within 1s with an administered activity smaller than those for PET-scans thus making the radiation exposure to medical personnel negligible.
Our recent paper on the Search for Neutron Flux Generation in a Plasma Discharge Electrolytic Cell [1] has as main goal the validation of the experiment in Ref.[2]. As a follow-up, Ref.[3] moves a set of objections on our procedure and presents argum entations on why the experiments should not yield the same results. We collect here additional material and calculations that contribute to understanding the observed discrepancies. Furthermore we prove that the absence of signals from Indium activation detectors reported also for the experiment of Ref.[2] is a clear indication that neutron production does not occur. [1] R.Faccini et al arXiv:1310.4749 [2] D.Cirillo et al, Key Engineering Materials 495, 104 (2012). [3] A.Widom et al. arXiv:1311.2447
Following some recent unexpected hints of neutron production in setups like high-voltage atmospheric discharges and plasma discharges in electrolytic cells, we present a measurement of the neutron flux in a configuration similar to the latter. We use two different types of neutron detectors, poly-allyl-diglicol-carbonate (PADC, aka CR-39) tracers and Indium disks. At 95% C.L. we provide an upper limit of 1.5 neutrons cm^-2 s^-1 for the thermal neutron flux at ~5 cm from the center of the cell. Allowing for a higher energy neutron component the largest allowed flux is 64 neutrons cm^-2 s^-1. This upper limit is two orders of magnitude smaller than what previously claimed in an electrolytic cell plasma discharge experiment. Furthermore the behavior of the CR-39 is discussed to point our possible sources of spurious signals.
This report describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE wi ll be a high intensity particle factory, based on a combination of a high duty cycle radio-frequency superconducting electron linac and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE will contribute to open new avenues of discoveries and to address most important riddles: What does matter consist of? What is the structure of proteins that have a fundamental role in life processes? What can we learn from protein structure to improve the treatment of diseases and to design more efficient drugs? But also how does an electronic chip behave under the effect of radiations? How can the heat flow in a large heat exchanger be optimized? The scientific potential of IRIDE is far reaching and justifies the construction of such a large facility in Italy in synergy with the national research institutes and companies and in the framework of the European and international research. It will impact also on R&D work for ILC, FEL, and will be complementarity to other large scale accelerator projects. IRIDE is also intended to be realized in subsequent stages of development depending on the assigned priorities.
209 - F. Bellini 2013
Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully cha racterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum.This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported.
91 - R.Faccini , F.Anelli , A. Bacci 2010
The advance in laser plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular the upcoming experiments with the FLAME laser at LNF will enter the GeV regime with almost 1pC of electrons. From the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need to develop a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV) under still unknown angular divergences. Within the PlasmonX experiment at LNF a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence present unprecedented challenges in the design and construction of such a device. We will present the design considerations for this spectrometer and the first results from a prototype.
We report radiation hardness tests performed at the Frascati Neutron Generator on silicon Photo-Multipliers, semiconductor photon detectors built from a square matrix of avalanche photo-diodes on a silicon substrate. Several samples from different ma nufacturers have been irradiated integrating up to 7x10^10 1-MeV-equivalent neutrons per cm^2. Detector performances have been recorded during the neutron irradiation and a gradual deterioration of their properties was found to happen already after an integrated fluence of the order of 10^8 1-MeV-equivalent neutrons per cm^2.
One of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor and measurements and theoretical interpretations of their results have advanced tremendously: apart from masses and quantum numbers of flavor particles, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. Till early 1990s observations of CP violation were confined to neutral $K$ mesons, but since then a large number of CP-violating processes have been studied in detail in neutral $B$ mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of $K, D$, and $B$ mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments, thus a review of the status of quark flavor physics is timely. This report summarizes the results of the current generation of experiments that is about to be completed and it confronts these results with the theoretical understanding of the field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا