ﻻ يوجد ملخص باللغة العربية
The background induced by the high penetration power of the gamma radiation is the main limiting factor of the current Radio-guided surgery (RGS). To partially mitigate it, a RGS with beta+ emitting radio-tracers has been suggested in literature. Here we propose the use of beta- emitting radio-tracers and beta- probes and discuss the advantage of this method with respect to the previously explored ones: the electron low penetration power allows for simple and versatile probes and could extend RGS to tumours for which background originating from nearby healthy tissue makes gamma probes less effective. We developed a beta- probe prototype and studied its performances on phantoms. By means of a detailed simulation we have also extrapolated the results to estimate the performances in a realistic case of meningioma, pathology which is going to be our first in-vivo test case. A good sensitivity to residuals down to 0.1ml can be reached within 1s with an administered activity smaller than those for PET-scans thus making the radiation exposure to medical personnel negligible.
A novel radio guided surgery (RGS) technique for cerebral tumors using $beta^{-}$ radiation is being developed. Checking the availability of a radio-tracer that can deliver a $beta^{-}$ emitter to the tumor is a fundamental step in the deployment of
Purpose: A radio-guided surgery technique with beta- -emitting radio-tracers was suggested to overcome the effect of the large penetration of gamma radiation. The feasibility studies in the case of brain tumors and abdominal neuro-endocrine tumors we
The development of the $beta^-$ based radio-guided surgery aims to extend the technique to those tumours where surgery is the only possible treatment and the assessment of the resection would most profit from the low background around the lesion, as
Samples of uterine leiomyomatis and normal tissues taken from patients after surgery were investigated using the Positron Annihilation Lifetime Spectroscopy (PALS). Significant differences in all PALS parameters between normal and diseased tissues we
Proton beam therapy can potentially offer improved treatment for cancers of the head and neck and in paediatric patients. There has been a sharp uptake of proton beam therapy in recent years as improved delivery techniques and patient benefits are ob