ترغب بنشر مسار تعليمي؟ اضغط هنا

Silicon Photo-Multiplier radiation hardness tests with a beam controlled neutron source

119   0   0.0 ( 0 )
 نشر من قبل Riccardo Faccini
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report radiation hardness tests performed at the Frascati Neutron Generator on silicon Photo-Multipliers, semiconductor photon detectors built from a square matrix of avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated integrating up to 7x10^10 1-MeV-equivalent neutrons per cm^2. Detector performances have been recorded during the neutron irradiation and a gradual deterioration of their properties was found to happen already after an integrated fluence of the order of 10^8 1-MeV-equivalent neutrons per cm^2.



قيم البحث

اقرأ أيضاً

Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEGII experiment, at PSI, Switzerland, investigates the forbidden decay $mu^+ to mathr m{e}^+ gamma$. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy $E_kgeq 0.5 ~MeV$) is present in the experimental hall produced along the beamline and in the hall itself. We present the effects of neutron fluxes comparable to the MEGII expected doses on several Silicon PhotoMulitpliers (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEGII experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.
In this work we study the performance of silicon photomultiplier (SiPM) light sensors after exposure to the JULIC cyclotron proton beam, of energy $sim$ 39 MeV, relative to their performance before exposure. The SiPM devices used in this study show a significant change in their behavior and downward shift of their breakdown voltage by as much as $sim$ 0.4$pm$0.1 V. Single photon measurements appear to be no longer possible for the SiPMs under study after exposure to a dose of $sim$ 0.2 Gy (corresponding to an integrated proton flux of $sim$$phi_{p}$=1.06x10$^{8}$ p/cm$^{2}$). No visible damage to the surface of the devices was caused by the exposure.
We report on the energy, timing, and pulse-shape discrimination performance of cylindrical 5 cm diameter x 5 cm thick and 7 cm diameter x 7 cm thick {it trans}-stilbene crystals read out with the passively summed output of three different commercial silicon photo-multiplier arrays. Our results indicate that using the summed output of an 8x8 array of SiPMs provides performance competitive with photo-multiplier tubes for many neutron imaging and correlated particle measurements: for the 5x5 cm crystal read out with SensLs ArrayJ-60035_64P-PCB, which had the best overall properties, we measure the energy resolution as 13.6$pm$1.8% at 341 keVee, the timing resolution in the 100--400 keVee range as 277$pm$34 ps, and the pulse-shape discrimination figure-of-merit as 2.21$pm$0.03 in the 230--260 keVee energy range. These results enable many scintillator-based instruments to enjoy the size, robustness, and power benefits of silicon photo-multiplier arrays as replacement for the photo-multiplier tubes that are predominantly used today.
The interest in using the radiation detectors based on high resistive chromium-compensated GaAs (GaAs:Cr) in high energy physics and others applied fields has been growing steadily due to its numerous advantages over others classical materials. High radiation hardness at room temperature stands out and needs to be systematically investigated. In this paper an experimental study of the effect of 20.9 MeV electrons generated by the LINAC-200 accelerator on some properties of GaAs:Cr based sensors is presented. In parallel, Si sensors were irradiated at the same conditions, measured and analyzed in order to perform a comparative study. The target sensors were irradiated with the dose up to 1.5 MGy. The current-voltage characteristics, resistivity, charge collection efficiency and their dependences on the bias voltage and temperature were measured at different absorbed doses. An analysis of the possible microscopic mechanisms leading to the observed effects in GaAs:Cr sensors is presented in the article.
76 - J. H. Han , H. S. Ahn , J. B. Bae 2020
When testing and calibrating particle detectors in a test beam, accurate tracking information independent of the detector being tested is extremely useful during the offline analysis of the data. A general-purpose Silicon Beam Tracker (SBT) was const ructed with an active area of 32.0 x 32.0 mm2 to provide this capability for the beam calibration of the Cosmic Ray Energetics And Mass (CREAM) calorimeter. The tracker consists of two modules, each comprised of two orthogonal layers of 380 {mu}m thick silicon strip sensors. In one module each layer is a 64-channel AC-coupled single-sided silicon strip detector (SSD) with a 0.5 mm pitch. In the other, each layer is a 32-channel DC-coupled single-sided SSD with a 1.0 mm pitch. The signals from the 4 layers are read out using modified CREAM hodoscope front-end electronics with a USB 2.0 interface board to a Linux DAQ PC. In this paper, we present the construction of the SBT, along with its performance in radioactive source tests and in a CERN beam test in October 2006.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا