ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended calibration range for prompt photon emission in ion beam irradiation

250   0   0.0 ( 0 )
 نشر من قبل Riccardo Faccini
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Bellini




اسأل ChatGPT حول البحث

Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum.This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported.



قيم البحث

اقرأ أيضاً

Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear $511 kiloelectronvolt$ photons produced by positrons annihilation from $beta^+$ emitters created by the beam. This paper reports rate measurements of the $511 kiloelectronvolt$ photons emitted after the interactions of a $80 megaelectronvolt / u$ fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a Poly-methyl methacrylate target. The time evolution of the $beta^+$ rate was parametrized and the dominance of $^{11}C$ emitters over the other species ($^{13}N$, $^{15}O$, $^{14}O$) was observed, measuring the fraction of carbon ions activating $beta^+$ emitters $A_0=(10.3pm0.7)cdot10^{-3}$. The average depth in the PMMA of the positron annihilation from $beta^+$ emitters was also measured, $D_{beta^+}=5.3pm1.1 millimeter$, to be compared to the expected Bragg peak depth $D_{Bragg}=11.0pm 0.5 millimeter$ obtained from simulations.
The possibility to separate signals caused by 511 keV photons created in annihilation of electron-positron pairs and the so-called prompt photons from nuclei de- excitation is investigated. It could potentially be used to improve the quality of recon structed images in the J-PET scanner in 2+1 photon tomography. Firstly, a research is conducted for several radioisotopes that decay via b{eta}+ decay followed by de-excitation of an excited nucleus. Efficiency, purity and false positive rate are calculated for each isotope as a function of energy deposited threshold, with a hypothesis that signals caused by 511 keV photons deposit smaller values of energy than 1 z 13the selected threshold, while prompt photons deposit larger energy than the threshold. Analysis of the results accompanied with physical properties of radioisotopes suggests using 44 Sc, which is the most promising candidate for medical applications. With the use of GATE and J-POS simulation software, in-phantom scattering was introduced and the best energy deposited threshold value was estimated to be approximately 375 keV. It corresponds to almost 100% efficiency for 511 keV signals, 75% purity for 511 keV photons, and approximately 70% efficiency and purity for prompt photons.
Charged particle beams are used in Particle Therapy (PT) to treat oncological patients due to their selective dose deposition in tissues and to their high biological effect in killing cancer cells with respect to photons and electrons used in convent ional radiotherapy. Nowadays, protons and carbon ions are used in PT clinical routine but, recently, the interest on the potential application of helium and oxygen beams is growing due to their reduced multiple scattering inside the body and increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands for online dose monitoring techniques, crucial to improve the quality assurance of treatments. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Prompt photons are produced by nuclear de-excitation processes and, at present, different dose monitoring and beam range verification techniques based on the prompt {gamma} detection have been proposed. It is hence of importance to perform the {gamma} yield measurement in therapeutical-like conditions. In this paper we report the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a PMMA target. The measurements were performed at the Heidelberg Ion-beam Therapy center (HIT) with beams of different energies. A LYSO scintillator has been used as photon detector. The obtained {gamma} yields for $^{12}$C ion beams are compared with results from literature, while no other results from $^{4}$He and $^{16}$O beams have been published yet. A discussion on the expected resolution of a slit camera detector is presented, demonstrating the feasibility of a prompt-{gamma} based monitoring technique for PT treatments using helium, carbon and oxygen ion beams.
Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90$degree$ with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with $E^{rm Prod}_{rm kin} >$ 83 MeV and emitted at 90$degree$ with respect to the beam line is: $dN_{rm P}/(dN_{rm C}dOmega)(E^{rm Prod}_{rm kin} > 83 {rm ~MeV}, theta=90degree)= (2.69pm 0.08_{rm stat} pm 0.12_{rm sys})times 10^{-4} sr^{-1}$.
Proton beam therapy can potentially offer improved treatment for cancers of the head and neck and in paediatric patients. There has been a sharp uptake of proton beam therapy in recent years as improved delivery techniques and patient benefits are ob served. However, treatments are currently planned using conventional x-ray CT images due to the absence of devices able to perform high quality proton computed tomography (pCT) under realistic clinical conditions. A new plastic-scintillator-based range telescope concept, named ASTRA, is proposed here as the energy tagging detector of a pCT system. Simulations conducted using Geant4 yield an expected energy resolution of 0.7% and have demonstrated the ability of ASTRA to track multiple protons simultaneously. If calorimetric information is used the energy resolution could be further improved to about 0.5%. Assuming clinical beam parameters the system is expected to be able to efficiently reconstruct at least, 10$^8$ protons/s. The performance of ASTRA has been tested by imaging phantoms to evaluate the image contrast and relative stopping power reconstruction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا