ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper presents a first mathematical convergence analysis of a Fock states feedback stabilization scheme via single-photon corrections. This measurement-based feedback has been developed and experimentally tested in 2012 by the cavity quantum ele ctrodynamics group of Serge Haroche and Jean-Michel Raimond. Here, we consider the infinite-dimensional Markov model corresponding to the ideal set-up where detection errors and feedback delays have been disregarded. In this ideal context, we show that any goal Fock state can be stabilized by a Lyapunov-based feedback for any initial quantum state belonging to the dense subset of finite rank density operators with support in a finite photon-number sub-space. Closed-loop simulations illustrate the performance of the feedback law.
The dynamics of many open quantum systems are described by stochastic master equations. In the discrete-time case, we recall the structure of the derived quantum filter governing the evolution of the density operator conditioned to the measurement ou tcomes. We then describe the structure of the corresponding particle quantum filters for estimating constant parameter and we prove their stability. In the continuous-time (diffusive) case, we propose a new formulation of these particle quantum filters. The interest of this new formulation is first to prove stability, and also to provide an efficient algorithm preserving, for any discretization step-size, positivity of the quantum states and parameter classical probabilities. This algorithm is tested on experimental data to estimate the detection efficiency for a superconducting qubit whose fluorescence field is measured using a heterodyne detector.
258 - Pierre Rouchon 2014
At the quantum level, feedback-loops have to take into account measurement back-action. We present here the structure of the Markovian models including such back-action and sketch two stabilization methods: measurement-based feedback where an open qu antum system is stabilized by a classical controller; coherent or autonomous feedback where a quantum system is stabilized by a quantum controller with decoherence (reservoir engineering). We begin to explain these models and methods for the photon box experiments realized in the group of Serge Haroche (Nobel Prize 2012). We present then these models and methods for general open quantum systems.
The present work establishes necessary and sufficient conditions for a nonlinear system with two inputs to be described by a specific triangular form. Except for some regularity conditions, such triangular form is flat. This may lead to the discovery of new flat systems. The proof relies on well-known results for driftless systems with two controls (the chained form) and on geometric tools from exterior differential systems. The paper also illustrates the application of its results on an academic example and on a reduced order model of an induction motor.
For a right-invariant and controllable driftless system on SU(n), we consider a time-periodic reference trajectory along which the linearized control system generates su(n): such trajectories always exist and constitute the basic ingredient of Corons Return Method. The open-loop controls that we propose, which rely on a left-invariant tracking error dynamics and on a fidelity-like Lyapunov function, are determined from a finite number of left-translations of the tracking error and they assure global asymptotic convergence towards the periodic reference trajectory. The role of these translations is to avoid being trapped in the critical region of this Lyapunov-like function. The convergence proof relies on a periodic version of LaSalles invariance principle and the control values are determined by numerical integration of the dynamics of the system. Simulations illustrate the obtained controls for $n=4$ and the generation of the C--NOT quantum gate.
In this paper we give a geometrical framework for the design of observers on finite-dimensional Lie groups for systems which possess some specific symmetries. The design and the error (between true and estimated state) equation are explicit and intri nsic. We consider also a particular case: left-invariant systems on Lie groups with right equivariant output. The theory yields a class of observers such that error equation is autonomous. The observers converge locally around any trajectory, and the global behavior is independent from the trajectory, which reminds of the linear stationary case.
A physical nonlinear dynamical model of a laser diode is considered. We propose a feed-forward control scheme based on differential flatness for the design of input-current modulations to compensate diode distortions. The goal is to transform without distortion a radio-frequency current modulation into a light modulation leaving the laser-diode and entering an optic fiber. We prove that standard physical dynamical models based on dynamical electron and photons balance are flat systems when the current is considered as control input, the flat output being the photon number (proportional to the light power). We prove that input-current is an affine map of the flat output, its logarithm and their time-derivatives up to order two. When the flat output is an almost harmonic signal with slowly varying amplitude and phase, these derivatives admit precise analytic approximations. It is then possible to design simple analogue electronic circuits to code approximations of the nonlinear computations required by our flatness-based approach. Simulations with the parameters of a commercial diode illustrate the practical interest of this pre-compensation scheme and its robustness versus modelling and analogue implementation errors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا