ترغب بنشر مسار تعليمي؟ اضغط هنا

83 - M. Moaied , J. V. Alvarez , 2014
We calculate the electronic structure and magnetic properties of hydrogenated graphite surfaces using van der Waals density functional theory (DFT) and model Hamiltonians. We find, as previously reported, that the interaction between hydrogen atoms o n graphene favors adsorption on different sublattices along with an antiferromagnetic coupling of the induced magnetic moments. On the contrary, when hydrogenation takes place on the surface of graphene multilayers or graphite (Bernal stacking), the interaction between hydrogen atoms competes with the different adsorption energies of the two sublattices. This competition may result in all hydrogen atoms adsorbed on the same sublattice and, thereby, in a ferromagnetic state for low concentrations. Based on the exchange couplings obtained from the DFT calculations, we have also evaluated the Curie temperature by mapping this system onto an Ising-like model with randomly located spins. Remarkably, the long-range nature of the magnetic coupling in these systems makes the Curie temperature size dependent and larger than room temperature for typical concentrations and sizes.
We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers inv olved in the desorption and migration processes of a single H atom. These barriers, along with attempt rates and the energetics of H pairs, are used as input parameters in kinetic Monte Carlo simulations to study the time evolution of an initial random distribution of adsorbed H atoms. The simulations reveal that, at room temperature, H atoms occupy only one sublattice before they completely desorb or form clusters. This sublattice selectivity in the distribution of H atoms may last for sufficiently long periods of time upon lowering the temperature down to 0 C. The final fate of the H atoms, namely, desorption or cluster formation, depends on the actual relative values of the activation barriers which can be tuned by doping. In some cases a sublattice selectivity can be obtained for periods of time experimentally relevant even at room temperature. This result shows the possibility for observation and applications of the ferromagnetic state associated with such distribution.
We report electrical conductance measurements of Bi nanocontacts created by repeated tip-surface indentation using a scanning tunneling microscope at temperatures of 4 K and 300 K. As a function of the elongation of the nanocontact we measure robust, tens of nanometers long plateaus of conductance G0 = 2e^2/h at room temperature. This observation can be accounted for by the mechanical exfoliation of a Bi(111) bilayer, a predicted QSH insulator, in the retracing process following a tip-surface contact. The formation of the bilayer is further supported by the additional observation of conductance steps below G0 before break-up at both temperatures. Our finding provides the first experimental evidence of the possibility of mechanical exfoliation of Bi bilayers, of the existence of the QSH phase in a two-dimensional crystal, and, most importantly, of the observation of the QSH phase at room temperature.
In this work, we focus in the magnetic evolution of a small region as seen by Hinode-SP during the time interval of about one hour. High-cadence LOS magnetograms and velocity maps were derived, allowing the study of different small-scale processes su ch as the formation/disappearance of bright points accompanying the evolution of an observed convective vortical motion.
The observation of intrinsic magnetic order in graphene and graphene-based materials relies on the formation of magnetic moments and a sufficiently strong mutual interaction. Vacancies are arguably considered the primary source of magnetic moments. H ere we present an in-depth density functional theory study of the spin-resolved electronic structure of (monoatomic) vacancies in graphene and bilayer graphene. We use two different methodologies: supercell calculations with the SIESTA code and cluster-embedded calculations with the ALACANT package. Our results are conclusive: The vacancy-induced extended $pi$ magnetic moments, which present long-range interactions and are capable of magnetic ordering, vanish at any experimentally relevant vacancy concentration. This holds for $sigma$-bond passivated and un-passivated reconstructed vacancies, although, for the un-passivated ones, the disappearance of the $pi$ magnetic moments is accompanied by a very large magnetic susceptibility. Only for the unlikely case of a full $sigma$-bond passivation, preventing the reconstruction of the vacancy, a full value of 1$mu_B$ for the $pi$ extended magnetic moment is recovered for both mono and bilayer cases. Our results put on hold claims of vacancy-induced ferromagnetic or antiferromagnetic order in graphene-based systems, while still leaving the door open to $sigma$-type paramagnetism.
Weak G-band (WGB) stars are a rare class of cool luminous stars that present a strong depletion in carbon, but also lithium abundance anomalies that have been little explored in the literature since the first discovery of these peculiar objects in th e early 50s. Here we focus on the Li-rich WGB stars and report on their evolutionary status. We explore different paths to propose a tentative explanation for the lithium anomaly. Using archive data, we derive the fundamental parameters of WGB (Teff, log g, log(L/Lsun)) using Hipparcos parallaxes and recent temperature scales. From the equivalent widths of Li resonance line at 6707 {AA}, we uniformly derive the lithium abundances and apply when possible NLTE corrections following the procedure described by Lind et al. (2009). We also compute dedicated stellar evolution models in the mass range 3.0 to 4.5 Msun, exploring the effects of rotation-induced and thermohaline mixing. These models are used to locate the WGB stars in the H-R diagram and to explore the origin of the abundance anomalies. The location of WGB stars in the H-R diagram shows that these are intermediate mass stars of masses ranging from 3.0 to 4.5 Msun located at the clump, which implies a degeneracy of their evolutionary status between subgiant/red giant branch and core helium burning phases. The atmospheres of a large proportion of WGB stars (more than 50%) exhibit lithium abundances A(Li) geq 1.4 dex similar to Li-rich K giants. The position of WGB stars along with the Li-rich K giants in the H-R diagram however indicates that both are well separated groups. The combined and tentatively consistent analysis of the abundance pattern for lithium, carbon and nitrogen of WGB stars seems to indicate that carbon underabundance could be decorrelated from the lithium and nitrogen overabundances.
The future development of quantum information using superconducting circuits requires Josephson qubits with long coherence times combined to a high-delity readout. Major progress in the control of coherence has recently been achieved using circuit qu antum electrodynamics (cQED) architectures, where the qubit is embedded in a coplanar waveguide resonator (CPWR) which both provides a well controlled electromagnetic environment and serves as qubit readout. In particular a new qubit design, the transmon, yields reproducibly long coherence times. However, a high-delity single-shot readout of the transmon, highly desirable for running simple quantum algorithms or measuring quantum correlations in multi-qubit experiments, is still lacking. In this work, we demonstrate a new transmon circuit where the CPWR is turned into a sample-and-hold detector, namely a Josephson Bifurcation Amplifer (JBA), which allows both fast measurement and single-shot discrimination of the qubit states. We report Rabi oscillations with a high visibility of 94% together with dephasing and relaxation times longer than 0.5 $mu$s. By performing two subsequent measurements, we also demonstrate that this new readout does not induce extra qubit relaxation.
104 - J. J. Palacios 2010
It is a fact that the minimal conductivity $sigma_0$ of most graphene samples is larger than the well-established universal value for ideal graphene $4e^2/pi h$; in particular, larger by a factor $gtrsimpi$. Despite intense theoretical activity, this fundamental issue has eluded an explanation so far. Here we present fully atomistic quantum mechanical estimates of the graphene minimal conductivity where electron-electron interactions are considered in the framework of density functional theory. We show the first conclusive evidence of the dominant role on the minimal conductivity of charged impurities over ripples, which have no visible effect. Furthermore, in combination with the logarithmic scaling law for diffusive metallic graphene, we ellucidate the origin of the ubiquitously observed minimal conductivity in the range $8e^2/h > sigma_0 gtrsim 4e^2/h$.
We address the electronic structure and magnetic properties of vacancies and voids both in graphene and graphene ribbons. Using a mean field Hubbard model, we study the appearance of magnetic textures associated to removing a single atom (vacancy) an d multiple adjacent atoms (voids) as well as the magnetic interactions between them. A simple set of rules, based upon Lieb theorem, link the atomic structure and the spatial arrangement of the defects to the emerging magnetic order. The total spin $S$ of a given defect depends on its sublattice imbalance, but some defects with S=0 can still have local magnetic moments. The sublattice imbalance also determines whether the defects interact ferromagnetically or antiferromagnetically with one another and the range of these magnetic interactions is studied in some simple cases. We find that in semiconducting armchair ribbons and two-dimensional graphene without global sublattice imbalance there is maximum defect density above which local magnetization disappears. Interestingly, the electronic properties of semiconducting graphene ribbons with uncoupled local moments are very similar to those of diluted magnetic semiconductors, presenting giant Zeeman splitting.
The performance of field effect transistors based on an single graphene ribbon with a constriction and a single back gate are studied with the help of atomistic models. It is shown how this scheme, unlike that of traditional carbon-nanotube-based tra nsistors, reduces the importance of the specifics of the chemical bonding to the metallic electrodes in favor of the carbon-based part of device. The ultimate performance limits are here studied for various constriction and metal-ribbon contact models. In particular we show that, even for poorly contacting metals, properly taylored constrictions can give promising values for both the on-conductance and the subthreshold swing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا