ﻻ يوجد ملخص باللغة العربية
We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers involved in the desorption and migration processes of a single H atom. These barriers, along with attempt rates and the energetics of H pairs, are used as input parameters in kinetic Monte Carlo simulations to study the time evolution of an initial random distribution of adsorbed H atoms. The simulations reveal that, at room temperature, H atoms occupy only one sublattice before they completely desorb or form clusters. This sublattice selectivity in the distribution of H atoms may last for sufficiently long periods of time upon lowering the temperature down to 0 C. The final fate of the H atoms, namely, desorption or cluster formation, depends on the actual relative values of the activation barriers which can be tuned by doping. In some cases a sublattice selectivity can be obtained for periods of time experimentally relevant even at room temperature. This result shows the possibility for observation and applications of the ferromagnetic state associated with such distribution.
Isolated hydrogen atoms absorbed on graphene are predicted to induce magnetic moments. Here we demonstrate that the adsorption of a single hydrogen atom on graphene induces a magnetic moment characterized by a ~20 meV spin-split state at the Fermi en
The potential energy surface (PES) of interlayer interaction of twisted bilayer graphene with vacancies in one of the layers is investigated via density functional theory (DFT) calculations with van der Waals corrections. These calculations give a no
By means of ab-initio calculations we investigate the optical properties of pure a-SiN$_x$ samples, with $x in [0.4, 1.8]$, and samples embedding silicon nanoclusters (NCs) of diameter $0.5 leq d leq 1.0$ nm. In the pure samples the optical absorptio
Monolayer graphene provides an ideal material to explore one of the fundamental light-field driven interference effects: Landau-Zener-Stuckelberg interference. However, direct observation of the resulting interference patterns in momentum space has n
Large holes in graphene membranes were recently shown to heal, either at room temperature during a low energy STEM experiment, or by annealing at high temperatures. However, the details of the healing mechanism remain unclear. We carried out fully at