ﻻ يوجد ملخص باللغة العربية
Weak G-band (WGB) stars are a rare class of cool luminous stars that present a strong depletion in carbon, but also lithium abundance anomalies that have been little explored in the literature since the first discovery of these peculiar objects in the early 50s. Here we focus on the Li-rich WGB stars and report on their evolutionary status. We explore different paths to propose a tentative explanation for the lithium anomaly. Using archive data, we derive the fundamental parameters of WGB (Teff, log g, log(L/Lsun)) using Hipparcos parallaxes and recent temperature scales. From the equivalent widths of Li resonance line at 6707 {AA}, we uniformly derive the lithium abundances and apply when possible NLTE corrections following the procedure described by Lind et al. (2009). We also compute dedicated stellar evolution models in the mass range 3.0 to 4.5 Msun, exploring the effects of rotation-induced and thermohaline mixing. These models are used to locate the WGB stars in the H-R diagram and to explore the origin of the abundance anomalies. The location of WGB stars in the H-R diagram shows that these are intermediate mass stars of masses ranging from 3.0 to 4.5 Msun located at the clump, which implies a degeneracy of their evolutionary status between subgiant/red giant branch and core helium burning phases. The atmospheres of a large proportion of WGB stars (more than 50%) exhibit lithium abundances A(Li) geq 1.4 dex similar to Li-rich K giants. The position of WGB stars along with the Li-rich K giants in the H-R diagram however indicates that both are well separated groups. The combined and tentatively consistent analysis of the abundance pattern for lithium, carbon and nitrogen of WGB stars seems to indicate that carbon underabundance could be decorrelated from the lithium and nitrogen overabundances.
We investigate a peculiar feature at the hottest, blue end of the horizontal branch of Galactic globular cluster omega Centauri, using the high-precision and nearly complete catalog that has been constructed from a survey taken with the ACS on board
Spectropolarimetric observations combined with tomographic imaging techniques have revealed that all pre-main sequence (PMS) stars host multipolar magnetic fields, ranging from strong and globally axisymmetric with ~>kilo-Gauss dipole components, to
A significant fraction of white dwarfs possess a magnetic field with strengths ranging from a few kG up to about 1000 MG. However, the incidence of magnetism varies when the white dwarf population is broken down into different spectral types providin
Various nucleosynthesis studies have pointed out that the r-process elements in very metal-poor (VMP) halo stars might have different origins. By means of familiar concepts from statistics (correlations, cluster analysis, rank tests of elemental abun
Are the kG-strength magnetic fields observed in young stars a fossil field left over from their formation or are they generated by a dynamo? We use radiation non-ideal magnetohydrodynamics simulations of the gravitational collapse of a rotating, magn