ترغب بنشر مسار تعليمي؟ اضغط هنا

Two planar supersymmetric quantum mechanical systems built around the quantum integrable Kepler/Coulomb and Euler/Coulomb problems are analyzed in depth. The supersymmetric spectra of both systems are unveiled, profiting from symmetry operators not r elated to invariance with respect to rotations. It is shown analytically how the first problem arises at the limit of zero distance between the centers of the second problem. It appears that the supersymmetric modified Euler/Coulomb problem is a quasi-isospectral deformation of the supersymmetric Kepler/Coulomb problem.
In this paper we shall study vacuum fluctuations of a single scalar field with Dirichlet boundary conditions in a finite but very long line. The spectral heat kernel, the heat partition function and the spectral zeta function are calculated in terms of Riemann Theta functions, the error function, and hypergeometric PFQ functions.
The stability of the kinks of the non-linear ${mathbb S}^2$-sigma model discovered in Phys. Rev. Lett. 101(2008)131602 is discussed from several points of view. After a direct estimation of the spectra of the second-order fluctuation operators around topological kinks, first-order field equations are proposed to distinguish between BPS and non-BPS kinks. The one-loop mass shifts caused by quantum fluctuations around the topological kinks are computed using the Cahill-Comtet-Glauber formula proposed in Phys. Lett. 64B(1976)283. The (lack of) stability of the non-topological kinks is unveiled by application of the Morse index theorem. These kinks are identified as non-BPS states and the interplay between instability and supersymmetry is explored.
Mass shifts induced by one-loop fluctuations of semi-local self-dual vortices are computed. The procedure is based on canonical quantization and heat kernel/ zeta function regularization methods. The issue of the survival of the classical degeneracy in the semi-classical regime is explored.
The problem of building supersymmetry in the quantum mechanics of two Coulombian centers of force is analyzed. It is shown that there are essentially two ways of proceeding. The spectral problems of the SUSY (scalar) Hamiltonians are quite similar an d become tantamount to solving entangled families of Razavy and Whittaker-Hill equations in the first approach. When the two centers have the same strength, the Whittaker-Hill equations reduce to Mathieu equations. In the second approach, the spectral problems are much more difficult to solve but one can still find the zero-energy ground states.
A formula is derived that allows the computation of one-loop mass shifts for self-dual semilocal topological solitons. These extended objects, which in three spatial dimensions are called semi-local strings, arise in a generalized Abelian Higgs model with a doublet of complex Higgs fields. Having a mixture of global, SU(2), and local (gauge), U(1), symmetries, this weird system may seem bizarre, but it is in fact the bosonic sector of electro-weak theory when the weak mixing angle is of 90 degrees. The procedure for computing the semi-classical mass shifts is based on canonical quantization and heat kernel/zeta function regularization methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا