ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum scalar fields in the half-line. A heat kernel/zeta function approach

108   0   0.0 ( 0 )
 نشر من قبل Juan Mateos Guilarte
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we shall study vacuum fluctuations of a single scalar field with Dirichlet boundary conditions in a finite but very long line. The spectral heat kernel, the heat partition function and the spectral zeta function are calculated in terms of Riemann Theta functions, the error function, and hypergeometric PFQ functions.



قيم البحث

اقرأ أيضاً

We introduce a polynomial zeta function $zeta^{(p)}_{P_n}$, related to certain problems of mathematical physics, and compute its value and the value of its first derivative at the origin $s=0$, by means of a very simple technique. As an application, we compute the determinant of the Dirac operator on quaternionic vector spaces.
148 - Davide Fermi 2015
This is the first one of a series of papers about zeta regularization of the divergences appearing in the vacuum expectation value (VEV) of several local and global observables in quantum field theory. More precisely we consider a quantized, neutral scalar field on a domain in any spatial dimension, with arbitrary boundary conditions and, possibly, in presence of an external classical potential. We analyze, in particular, the VEV of the stress-energy tensor, the corresponding boundary forces and the total energy, thus taking into account both local and global aspects of the Casimir effect. In comparison with the wide existing literature on these subjects, we try to develop a more systematic approach, allowing to treat specific configurations by mere application of a general machinery. The present Part I is mainly devoted to setting up this general framework; at the end of the paper, this is exemplified in a very simple case. In Parts II, III and IV we will consider more engaging applications, indicated in the Introduction of the present work.
214 - Davide Fermi 2015
Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we compute the renormalized vacuum expectation value of several observables (in particular, of the stress-energy tensor and of the total energy) for a massless scalar field confined within a rectangular box of arbitrary dimension.
248 - Davide Fermi 2015
Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we renormalize the vacuum expectation value of the stress-energy tensor (and of the total energy) for a scalar field in presence of an external harmonic potential.
161 - Davide Fermi 2015
In Part I of this series of papers we have described a general formalism to compute the vacuum effects of a scalar field via local (or global) zeta regularization. In the present Part II we exemplify the general formalism in a number of cases which c an be solved explicitly by analytical means. More in detail we deal with configurations involving parallel or perpendicular planes and we also discuss the case of a three-dimensional wedge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا