ﻻ يوجد ملخص باللغة العربية
The problem of building supersymmetry in the quantum mechanics of two Coulombian centers of force is analyzed. It is shown that there are essentially two ways of proceeding. The spectral problems of the SUSY (scalar) Hamiltonians are quite similar and become tantamount to solving entangled families of Razavy and Whittaker-Hill equations in the first approach. When the two centers have the same strength, the Whittaker-Hill equations reduce to Mathieu equations. In the second approach, the spectral problems are much more difficult to solve but one can still find the zero-energy ground states.
Within the context of Supersymmetric Quantum Mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restrict
A trajectory isomorphism between the two Newtonian fixed center problem in the sphere and two associated planar two fixed center problems is constructed by performing two simultaneous gnomonic projections in $S^2$. This isomorphism converts the origi
We study the perturbative quantization of 2-dimensional massive scalar field theory with polynomial (or power series) potential on manifolds with boundary. We prove that it fits into the functorial quantum field theory framework of Atiyah-Segal. In p
The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials has been proved commuting with the deformed orbital angular momentum $L$. When the potential takes the Coulomb form, the system has an SO(3) symmetry, and similarly the har
We investigate the evolutionary aspects of some integrable soliton models whose Lagrangians are derived from the pullback of a volume-form to a two-dimensional target space. These models are known to have infinitely many conserved quantities and supp