ﻻ يوجد ملخص باللغة العربية
A formula is derived that allows the computation of one-loop mass shifts for self-dual semilocal topological solitons. These extended objects, which in three spatial dimensions are called semi-local strings, arise in a generalized Abelian Higgs model with a doublet of complex Higgs fields. Having a mixture of global, SU(2), and local (gauge), U(1), symmetries, this weird system may seem bizarre, but it is in fact the bosonic sector of electro-weak theory when the weak mixing angle is of 90 degrees. The procedure for computing the semi-classical mass shifts is based on canonical quantization and heat kernel/zeta function regularization methods.
Mass shifts induced by one-loop fluctuations of semi-local self-dual vortices are computed. The procedure is based on canonical quantization and heat kernel/ zeta function regularization methods. The issue of the survival of the classical degeneracy in the semi-classical regime is explored.
We present a semi-numerical algorithm to calculate one-loop virtual corrections to scattering amplitudes. The divergences of the loop amplitudes are regulated using dimensional regularization. We treat in detail the case of amplitudes with up to five
We present a semi-numerical method to compute one-loop corrections to processes involving many particles. We treat in detail cases with up to five external legs and massless internal propagators, although the method is more general.
The effective action of the recently proposed vector Galileon theory is considered. Using the background field method, we obtain the one-loop correction to the propagator of the Proca field from vector Galileon self-interactions. Contrary to the so-c
We investigate predictions on the triple Higgs boson couplings with radiative corrections in the model with an additional real singlet scalar field. In this model, the second physical scalar state ($H$) appears in addition to the Higgs boson ($h$) wi