ترغب بنشر مسار تعليمي؟ اضغط هنا

Factor structures or interactive effects are convenient devices to incorporate latent variables in panel data models. We consider fixed effect estimation of nonlinear panel single-index models with factor structures in the unobservables, which includ e logit, probit, ordered probit and Poisson specifications. We establish that fixed effect estimators of model parameters and average partial effects have normal distributions when the two dimensions of the panel grow large, but might suffer of incidental parameter bias. We show how models with factor structures can also be applied to capture important features of network data such as reciprocity, degree heterogeneity, homophily in latent variables and clustering. We illustrate this applicability with an empirical example to the estimation of a gravity equation of international trade between countries using a Poisson model with multiple factors.
This paper proposes a method to address the longstanding problem of lack of monotonicity in estimation of conditional and structural quantile functions, also known as the quantile crossing problem. The method consists in sorting or monotone rearrangi ng the original estimated non-monotone curve into a monotone rearranged curve. We show that the rearranged curve is closer to the true quantile curve in finite samples than the original curve, establish a functional delta method for rearrangement-related operators, and derive functional limit theory for the entire rearranged curve and its functionals. We also establish validity of the bootstrap for estimating the limit law of the the entire rearranged curve and its functionals. Our limit results are generic in that they apply to every estimator of a monotone econometric function, provided that the estimator satisfies a functional central limit theorem and the function satisfies some smoothness conditions. Consequently, our results apply to estimation of other econometric functions with monotonicity restrictions, such as demand, production, distribution, and structural distribution functions. We illustrate the results with an application to estimation of structural quantile functions using data on Vietnam veteran status and earnings.
This paper considers identification and estimation of ceteris paribus effects of continuous regressors in nonseparable panel models with time homogeneity. The effects of interest are derivatives of the average and quantile structural functions of the model. We find that these derivatives are identified with two time periods for stayers, i.e. for individuals with the same regressor values in two time periods. We show that the identification results carry over to models that allow location and scale time effects. We propose nonparametric series methods and a weighted bootstrap scheme to estimate and make inference on the identified effects. The bootstrap proposed allows uniform inference for function-valued parameters such as quantile effects uniformly over a region of quantile indices and/or regressor values. An empirical application to Engel curve estimation with panel data illustrates the results.
This paper applies a regularization procedure called increasing rearrangement to monotonize Edgeworth and Cornish-Fisher expansions and any other related approximations of distribution and quantile functions of sample statistics. Besides satisfying t he logical monotonicity, required of distribution and quantile functions, the procedure often delivers strikingly better approximations to the distribution and quantile functions of the sample mean than the original Edgeworth-Cornish-Fisher expansions.
This paper considers fixed effects estimation and inference in linear and nonlinear panel data models with random coefficients and endogenous regressors. The quantities of interest -- means, variances, and other moments of the random coefficients -- are estimated by cross sectional sample moments of GMM estimators applied separately to the time series of each individual. To deal with the incidental parameter problem introduced by the noise of the within-individual estimators in short panels, we develop bias corrections. These corrections are based on higher-order asymptotic expansions of the GMM estimators and produce improved point and interval estimates in moderately long panels. Under asymptotic sequences where the cross sectional and time series dimensions of the panel pass to infinity at the same rate, the uncorrected estimator has an asymptotic bias of the same order as the asymptotic variance. The bias corrections remove the bias without increasing variance. An empirical example on cigarette demand based on Becker, Grossman and Murphy (1994) shows significant heterogeneity in the price effect across U.S. states.
In this paper, we develop a new censored quantile instrumental variable (CQIV) estimator and describe its properties and computation. The CQIV estimator combines Powell (1986) censored quantile regression (CQR) to deal with censoring, with a control variable approach to incorporate endogenous regressors. The CQIV estimator is obtained in two stages that are non-additive in the unobservables. The first stage estimates a non-additive model with infinite dimensional parameters for the control variable, such as a quantile or distribution regression model. The second stage estimates a non-additive censored quantile regression model for the response variable of interest, including the estimated control variable to deal with endogeneity. For computation, we extend the algorithm for CQR developed by Chernozhukov and Hong (2002) to incorporate the estimation of the control variable. We give generic regularity conditions for asymptotic normality of the CQIV estimator and for the validity of resampling methods to approximate its asymptotic distribution. We verify these conditions for quantile and distribution regression estimation of the control variable. Our analysis covers two-stage (uncensored) quantile regression with non-additive first stage as an important special case. We illustrate the computation and applicability of the CQIV estimator with a Monte-Carlo numerical example and an empirical application on estimation of Engel curves for alcohol.
Suppose that a target function is monotonic, namely, weakly increasing, and an original estimate of the target function is available, which is not weakly increasing. Many common estimation methods used in statistics produce such estimates. We show th at these estimates can always be improved with no harm using rearrangement techniques: The rearrangement methods, univariate and multivariate, transform the original estimate to a monotonic estimate, and the resulting estimate is closer to the true curve in common metrics than the original estimate. We illustrate the results with a computational example and an empirical example dealing with age-height growth charts.
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applie d to the tails, is of interest in many economic and financial applications, such as conditional value-at-risk, production efficiency, and adjustment bands in (S,s) models. In this paper we provide feasible inference tools for extremal conditional quantile models that rely upon extreme value approximations to the distribution of self-normalized quantile regression statistics. The methods are simple to implement and can be of independent interest even in the non-regression case. We illustrate the results with two empirical examples analyzing extreme fluctuations of a stock return and extremely low percentiles of live infants birthweights in the range between 250 and 1500 grams.
Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time homogeneity conditions that are like time is randomly assi gned or time is an instrument. Partial identification results for average and quantile effects are given for discrete regressors, under static or dynamic conditions, in fully nonparametric and in semiparametric models, with time effects. It is shown that the usual, linear, fixed-effects estimator is not a consistent estimator of the identified average effect, and a consistent estimator is given. A simple estimator of identified quantile treatment effects is given, providing a solution to the important problem of estimating quantile treatment effects from panel data. Bounds for overall effects in static and dynamic models are given. The dynamic bounds provide a partial identification solution to the important problem of estimating the effect of state dependence in the presence of unobserved heterogeneity. The impact of $T$, the number of time periods, is shown by deriving shrinkage rates for the identified set as $T$ grows. We also consider semiparametric, discrete-choice models and find that semiparametric panel bounds can be much tighter than nonparametric bounds. Computationally-convenient methods for semiparametric models are presented. We propose a novel inference method that applies in panel data and other settings and show that it produces uniformly valid confidence regions in large samples. We give empirical illustrations.
Counterfactual distributions are important ingredients for policy analysis and decomposition analysis in empirical economics. In this article we develop modeling and inference tools for counterfactual distributions based on regression methods. The co unterfactual scenarios that we consider consist of ceteris paribus changes in either the distribution of covariates related to the outcome of interest or the conditional distribution of the outcome given covariates. For either of these scenarios we derive joint functional central limit theorems and bootstrap validity results for regression-based estimators of the status quo and counterfactual outcome distributions. These results allow us to construct simultaneous confidence sets for function-valued effects of the counterfactual changes, including the effects on the entire distribution and quantile functions of the outcome as well as on related functionals. These confidence sets can be used to test functional hypotheses such as no-effect, positive effect, or stochastic dominance. Our theory applies to general counterfactual changes and covers the main regression methods including classical, quantile, duration, and distribution regressions. We illustrate the results with an empirical application to wage decompositions using data for the United States. As a part of developing the main results, we introduce distribution regression as a comprehensive and flexible tool for modeling and estimating the textit{entire} conditional distribution. We show that distribution regression encompasses the Cox duration regression and represents a useful alternative to quantile regression. We establish functional central limit theorems and bootstrap validity results for the empirical distribution regression process and various related functionals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا