ﻻ يوجد ملخص باللغة العربية
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many economic and financial applications, such as conditional value-at-risk, production efficiency, and adjustment bands in (S,s) models. In this paper we provide feasible inference tools for extremal conditional quantile models that rely upon extreme value approximations to the distribution of self-normalized quantile regression statistics. The methods are simple to implement and can be of independent interest even in the non-regression case. We illustrate the results with two empirical examples analyzing extreme fluctuations of a stock return and extremely low percentiles of live infants birthweights in the range between 250 and 1500 grams.
Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time homogeneity conditions that are like time is randomly assi
This paper considers fixed effects estimation and inference in linear and nonlinear panel data models with random coefficients and endogenous regressors. The quantities of interest -- means, variances, and other moments of the random coefficients --
This paper proposes a method to address the longstanding problem of lack of monotonicity in estimation of conditional and structural quantile functions, also known as the quantile crossing problem. The method consists in sorting or monotone rearrangi
We propose two types of Quantile Graphical Models (QGMs) --- Conditional Independence Quantile Graphical Models (CIQGMs) and Prediction Quantile Graphical Models (PQGMs). CIQGMs characterize the conditional independence of distributions by evaluating
Using and extending fractional order statistic theory, we characterize the $O(n^{-1})$ coverage probability error of the previously proposed confidence intervals for population quantiles using $L$-statistics as endpoints in Hutson (1999). We derive a