ﻻ يوجد ملخص باللغة العربية
Counterfactual distributions are important ingredients for policy analysis and decomposition analysis in empirical economics. In this article we develop modeling and inference tools for counterfactual distributions based on regression methods. The counterfactual scenarios that we consider consist of ceteris paribus changes in either the distribution of covariates related to the outcome of interest or the conditional distribution of the outcome given covariates. For either of these scenarios we derive joint functional central limit theorems and bootstrap validity results for regression-based estimators of the status quo and counterfactual outcome distributions. These results allow us to construct simultaneous confidence sets for function-valued effects of the counterfactual changes, including the effects on the entire distribution and quantile functions of the outcome as well as on related functionals. These confidence sets can be used to test functional hypotheses such as no-effect, positive effect, or stochastic dominance. Our theory applies to general counterfactual changes and covers the main regression methods including classical, quantile, duration, and distribution regressions. We illustrate the results with an empirical application to wage decompositions using data for the United States. As a part of developing the main results, we introduce distribution regression as a comprehensive and flexible tool for modeling and estimating the textit{entire} conditional distribution. We show that distribution regression encompasses the Cox duration regression and represents a useful alternative to quantile regression. We establish functional central limit theorems and bootstrap validity results for the empirical distribution regression process and various related functionals.
This paper considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by $p$, is possibly much larger than the sample size $n$. There is a variety of economic applications where solving this problem all
One fundamental problem in the learning treatment effect from observational data is confounder identification and balancing. Most of the previous methods realized confounder balancing by treating all observed variables as confounders, ignoring the id
This paper makes several important contributions to the literature about nonparametric instrumental variables (NPIV) estimation and inference on a structural function $h_0$ and its functionals. First, we derive sup-norm convergence rates for computat
This paper describes three methods for carrying out non-asymptotic inference on partially identified parameters that are solutions to a class of optimization problems. Applications in which the optimization problems arise include estimation under sha
The aim of this paper is to present a mixture composite regression model for claim severity modelling. Claim severity modelling poses several challenges such as multimodality, heavy-tailedness and systematic effects in data. We tackle this modelling