ﻻ يوجد ملخص باللغة العربية
Suppose that a target function is monotonic, namely, weakly increasing, and an original estimate of the target function is available, which is not weakly increasing. Many common estimation methods used in statistics produce such estimates. We show that these estimates can always be improved with no harm using rearrangement techniques: The rearrangement methods, univariate and multivariate, transform the original estimate to a monotonic estimate, and the resulting estimate is closer to the true curve in common metrics than the original estimate. We illustrate the results with a computational example and an empirical example dealing with age-height growth charts.
Suppose that a target function is monotonic, namely, weakly increasing, and an available original estimate of this target function is not weakly increasing. Rearrangements, univariate and multivariate, transform the original estimate to a monotonic e
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applie
Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time homogeneity conditions that are like time is randomly assi
This paper proposes a method to address the longstanding problem of lack of monotonicity in estimation of conditional and structural quantile functions, also known as the quantile crossing problem. The method consists in sorting or monotone rearrangi
This paper considers fixed effects estimation and inference in linear and nonlinear panel data models with random coefficients and endogenous regressors. The quantities of interest -- means, variances, and other moments of the random coefficients --