ترغب بنشر مسار تعليمي؟ اضغط هنا

By means of DFT-based first-principles calculations, we examine two polymorphs of the newly synthesized 1111-like MgFeSeO as possible new superconducting systems. We have found that the polymorph with blocks [MgO], where Mg atoms are placed in the ce nters of O4 tetrahedra, is dynamically unstable - unlike the ZrCuSiAs-type polymorph with oxygen atoms placed in the centers of Mg4 tetrahedra. The characterization of this material covers the structural, elastic properties, electronic band structure, density of electronic states, and Fermi surface. Our calculations suggest that a high critical temperature for MgFeSeO may be achieved as a result of electron or hole doping through ion substitutions or through creation of lattice vacancies.
By means of the FLAPW-GGA approach, we have systematically studied the structural and electronic properties of tetragonal dichalcogenides KNi2Ch2 (Ch = S, Se, and Te). Our results show that replacements of chalcogens (S -> Se -> Te) lead to anisotrop ic deformations of the crystals structure, which are related to the strong anisotropic character of the inter-atomic bonds, where inside the [Ni2Ch2] blocks, mixed covalent-ionic-metallic bonds occur, whereas between the adjacent [Ni2Ch2] blocks and K atomic sheets, ionic bonds emerge. We found that in the sequence KNi2S2 -> KNi2Se2 -> KNi2Te2 (i) the overall band structure (where the near-Fermi valence bands are due mainly to the Ni states) is preserved, but the width of the common valence band and the widths of the separate subbands and the gaps decrease; (ii) the total DOSs at the Fermi level also decrease; and (iii) for the Fermi surfaces, the most appreciable changes are demonstrated by the hole-like sheets, when a necklace-like topology is formed for the 2D-like sheets and the volume of the closed pockets decreases. Some trends in structural and electronic parameters for ThCr2Si2-type layered dichalcogenides, KNi2Ch2, KFe2Ch2, KCo2Se2, are discussed.
Very recently, as an important step in the development of layered Fe-free pnictide-oxide superconductors, the new phase BaTi2Bi2O was discovered which has the highest TC (about 4.6 K) among all related non-doped systems. In this Letter, we report for the first time the electronic bands, Fermi surface topology, total and partial densities of electronic states for BaTi2Bi2O obtained by means of the first-principles FLAPW-GGA calculations. The inter-atomic bonding picture is described as a high-anisotropic mixture of metallic, covalent, and ionic contributions. Besides, the structural and electronic factors, which can be responsible for the increased transition temperature for BaTi2Bi2O (as compared with related pnictide-oxides BaTi2As2O and BaTi2Sb2O), are discussed.
By means of first-principles calculations? we have probed the peculiarities of the elecrtonic band structure and Fermi surface for the recently discovered layered superconductor LaO0.5F0.5BiSi2 in comparison with the parent phase LaOBiO2. The electro nic factors prpmoting the transition of LaOBiS2 upon fluorine doping to superconducting state: inter-layer charge transfer, the evolution of the Fermi surface, and the dependence of the near-Fermi densities of states on x for LaO1-xFxBiS2 are evaluated and discussed in comparison with the available experiments.
The presence in the graphyne sheets of a variable amount of sp2/sp1 atoms, which can be transformed into sp3-like atoms by covalent binding with one or two fluorine atoms, respectively, allows one to assume the formation of fulorinated graphynes (flu orographynes) with variable F/C stoichiometry. Here, employing DFT band structure calculations, we examine a series of fluorographynes, and the trends in their stability, structural and electronic properties have been discussed as depending on their stoichiometry: from C2F3 (F/C= 1.5) to C4F7 (F/C= 1.75).
This work reports on the elastic and electronic properties of the newly discovered superconductor Th2NiC2 (A .Machado, et al., Supercond. Sci. Technol. 25 (2012) 045010) as obtained within ab initio calculations. We found that Th2NiC2 is mechanically stable and it will behave as a ductile material exhibiting enhanced elastic anisotropy in shear and a rather low hardness Our data reveal that for Th2NiC2 the Fermi level is located in a deep DOS minimum and the experimentally observed increase in TC in the sequence Th2NiC2 -> Th1.8Sc0.2NiC2 may be explained by the growth of N(EF). We also speculate that (i) an increase in the hole concentration will promote exchange splitting of Ni 3d bands, therefore the hole-doped Th2NiC2 should have a certain concentration border, where a phase transition from the superconducting to the magnetic state will be expected, and (ii) an increase in N(EF) (and, probably, in TC) for Th2NiC2-based materials may be also achieved by an alternative way: by electron doping - for example, by partial substitution of V for Th or Cu for Ni, as well as by partial substitution of N for C with the formation of Th-Ni carbonitrides like Th2NiC2-xNx.
We have examined theoretically the electronic band structure and Fermi surface of tetragonal low-temperature superconductor Bi2Pd. Our main results are that (i) the Pd 4d and Bi 6p states determine the main peculiarities of the multiple-sheets FS top ology, thus for this material the complicated superconducting gap structure with different energy gaps on different FS sheets should be assumed; (ii) the effect of the spin-orbit coupling is of minor importance for the distributions of the near-Fermi electronic states; and (iii) this phase adopts 3D-like type owing to the directional bonds between the adjacent atomic sheets.
By means of the first-principle calculations, we have investigated electronic, magnetic properties and correlation effects for the newly discovered layered oxyselenide Na2Fe2Se2O. Our results reveal that the electron correlations in the Fe 3d bands p romote a transition of Na2Fe2Se2O from magnetic metallic or half-metallic states to the antiferromagnetic Mott-insulating state. In addition, the bonding picture in Na2Fe2Se2O is described as an anisotropic mixture of ionic and covalent contributions.
First-principles calculations were performed to investigate the electronic structure and the Fermi surface of the newly discovered low-temperature superconductor: fluorine-doped WO3. We find that F doping provides the transition of the insulating tun gsten trioxide into a metallic-like phase WO3-xFx, where the near-Fermi states are formed mainly from W 5d with admixture of O 2p orbitals. The cooperative effect of fluorine additives in WO3 consists in change of electronic concentration as well as the lattice constant. At probing their influence on the near-Fermi states separately, the dominant role of the electronic factor for the transition of tungsten oxyfluoride into superconducting state was established. The volume of the Fermi surface gradually increases with the increase of the doping. In the sequence WO3 rightarrow WO2.5F0.5 the effective atomic charges of W and O ions decrease, but much less, than it is predicted within the idealized ionic model - owing to presence of the covalent interactions W-O and W-F.
First-principles FLAPW-GGA band structure calculations were employed to examine the structural, electronic properties and the chemical bonding picture for four ZrCuSiAs-like Th-based quaternary pnictide oxides ThCuPO, ThCuAsO, ThAgPO, and ThAgAsO. Th ese compounds were found to be semimetals and may be viewed as intermediate systems between two main isostructural groups of superconducting and semiconducting 1111 phases. The Th 5f states participate actively in the formation of valence bands and the Th 5f states for ThMPnO phases are itinerant and partially occupied. We found also that the bonding picture in ThMPnO phases can be classified as a high-anisotropic mixture of ionic and covalent contributions: inside [Th2O2] and [M2Pn2] blocks, mixed covalent-ionic bonds take place, whereas between the adjacent [Th2O2]/[M2Pn2] blocks, ionic bonds emerge owing to [Th2O2] to [M2Pn2] charge transfer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا