ترغب بنشر مسار تعليمي؟ اضغط هنا

Trends in structural, electronic properties, Fermi surface topology, and inter-atomic bonding in the series of ternary layered dichalcogenides KNi2S2, KNi2Se2, and KNi2Te2 from first principles calculations

151   0   0.0 ( 0 )
 نشر من قبل Igor Shein
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of the FLAPW-GGA approach, we have systematically studied the structural and electronic properties of tetragonal dichalcogenides KNi2Ch2 (Ch = S, Se, and Te). Our results show that replacements of chalcogens (S -> Se -> Te) lead to anisotropic deformations of the crystals structure, which are related to the strong anisotropic character of the inter-atomic bonds, where inside the [Ni2Ch2] blocks, mixed covalent-ionic-metallic bonds occur, whereas between the adjacent [Ni2Ch2] blocks and K atomic sheets, ionic bonds emerge. We found that in the sequence KNi2S2 -> KNi2Se2 -> KNi2Te2 (i) the overall band structure (where the near-Fermi valence bands are due mainly to the Ni states) is preserved, but the width of the common valence band and the widths of the separate subbands and the gaps decrease; (ii) the total DOSs at the Fermi level also decrease; and (iii) for the Fermi surfaces, the most appreciable changes are demonstrated by the hole-like sheets, when a necklace-like topology is formed for the 2D-like sheets and the volume of the closed pockets decreases. Some trends in structural and electronic parameters for ThCr2Si2-type layered dichalcogenides, KNi2Ch2, KFe2Ch2, KCo2Se2, are discussed.

قيم البحث

اقرأ أيضاً

First-principles FLAPW-GGA band structure calculations were employed to examine the structural, electronic properties and the chemical bonding picture for four ZrCuSiAs-like Th-based quaternary pnictide oxides ThCuPO, ThCuAsO, ThAgPO, and ThAgAsO. Th ese compounds were found to be semimetals and may be viewed as intermediate systems between two main isostructural groups of superconducting and semiconducting 1111 phases. The Th 5f states participate actively in the formation of valence bands and the Th 5f states for ThMPnO phases are itinerant and partially occupied. We found also that the bonding picture in ThMPnO phases can be classified as a high-anisotropic mixture of ionic and covalent contributions: inside [Th2O2] and [M2Pn2] blocks, mixed covalent-ionic bonds take place, whereas between the adjacent [Th2O2]/[M2Pn2] blocks, ionic bonds emerge owing to [Th2O2] to [M2Pn2] charge transfer.
Very recently (November, 2010, PRB, 82, 180520R) the first 122-like ternary superconductor KxFe2Se2 with enhanced TC ~ 31K has been discovered. This finding has stimulated much activity in search of related materials and triggered the intense studies of their properties. Indeed already in 2010-2011 the superconductivity (TC ~ 27-33K) was also found in the series of new synthesized 122 phases such as CsxFe2Se2, RbxFe2Se2, (TlK)xFeySe2 etc. which have formed today the new family of superconducting iron-based materials without toxic As. Here, using the ab initio FLAPW-GGA method we have predicted for the first time the elastic properties for KFe2Se2 and discussed their interplay with inter-atomic bonding for this system. Our data reveal that the examined phase is relatively soft material. In addition, this system is mechanically stable, adopts considerable elastic anisotropy, and demonstrates brittleness. These conclusions agree with the bonding picture for KFe2Se2, where the inter-atomic bonding is highly anisotropic and includes ionic, covalent and metallic contributions.
First-principles calculations through a FLAPW-GGA method for six possible polymorphs of ruthenium mononitride RuN with various atomic coordination numbers CNs: cubic zinc blende (ZB) and cooperite PtS-like structures with CNs = 4; cubic rock-salt (RS ), hexagonal WC-like and NiAs-like structures with CNs = 6 and cubic CsCl-like structure with CN = 8 indicate that the most stable is ZB structure, which is much more preferable for RuN than the recently reported RS structure for synthesized RuN samples. The elastic and electronic properties of ZB-RuN were investigated and discussed in comparison with those for RS-RuN polymorph.
Using first-principles calculations within the generalized gradient approximation, we predicted the lattice parameters, elastic constants, vibrational properties, and electronic structure of cementite (Fe3C). Its nine single-crystal elastic constants were obtained by computing total energies or stresses as a function of applied strain. Furthermore, six of them were determined from the initial slopes of the calculated longitudinal and transverse acoustic phonon branches along the [100], [010] and [001] directions. The three methods agree well with each other, the calculated polycrystalline elastic moduli are also in good overall agreement with experiments. Our calculations indicate that Fe3C is mechanically stable. The experimentally observed high elastic anisotropy of Fe3C is also confirmed by our study. Based on electronic density of states and charge density distribution, the chemical bonding in Fe3C was analyzed and was found to exhibit a complex mixture of metallic, covalent, and ionic characters.
Density Functional Theory calculations have been performed to obtain lattice parameters, elastic constants, and electronic properties of ideal pyrochlores with the composition A$_2$B$_2$O$_7$ (where A=La,Y and B=Ti,Sn,Hf, Zr). Some thermal properties are also inferred from the elastic properties. A decrease of the sound velocity (and thus, of the Debye temperature) with the atomic mass of the B ion is observed. Static and dynamical atomic charges are obtained to quantify the degree of covalency/ionicity. A large anomalous contribution to the dynamical charge is observed for Hf, Zr, and specially for Ti. It is attributed to the hybridization between occupied $2p$ states of oxygen and unoccupied d states of the B cation. The analysis based on Mulliken population and deformation charge integrated in the Voronoi polyhedra indicates that the ionicity of these pyrochlores increases in the order Sn--Ti--Hf--Zr. The charge deformation contour plots support this assignment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا