ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio probing of the electronic band structure and Fermi surface of fluorine-doped WO3 as a novel low-TC superconductor

63   0   0.0 ( 0 )
 نشر من قبل Igor Shein
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

First-principles calculations were performed to investigate the electronic structure and the Fermi surface of the newly discovered low-temperature superconductor: fluorine-doped WO3. We find that F doping provides the transition of the insulating tungsten trioxide into a metallic-like phase WO3-xFx, where the near-Fermi states are formed mainly from W 5d with admixture of O 2p orbitals. The cooperative effect of fluorine additives in WO3 consists in change of electronic concentration as well as the lattice constant. At probing their influence on the near-Fermi states separately, the dominant role of the electronic factor for the transition of tungsten oxyfluoride into superconducting state was established. The volume of the Fermi surface gradually increases with the increase of the doping. In the sequence WO3 rightarrow WO2.5F0.5 the effective atomic charges of W and O ions decrease, but much less, than it is predicted within the idealized ionic model - owing to presence of the covalent interactions W-O and W-F.

قيم البحث

اقرأ أيضاً

We report the discovery of a self-doped multi-layer high Tc superconductor Ba2Ca3Cu4O8F2(F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi surface(FS) sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a Tc of 60K, possessing simultaneously both electron- and hole-doped FS sheets. Intriguingly, the FS sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic (Pi/a, Pi/a) scattering.
We present an emph{ab-initio} study of the graphene quasi-particle band structure as function of the doping in G_0 W_0 approximation. We show that the LDA Fermi velocity is substantially renormalized and this renormalization rapidly decreases as func tion of the doping. We found, in agreement with previous papers, that close to the Dirac point the linear dispersion of the bands is broken but this behaviour disappears with a small doping. We discuss our results in the light of recent experiments on graphene and intercalate graphite.
We have examined theoretically the electronic band structure and Fermi surface of tetragonal low-temperature superconductor Bi2Pd. Our main results are that (i) the Pd 4d and Bi 6p states determine the main peculiarities of the multiple-sheets FS top ology, thus for this material the complicated superconducting gap structure with different energy gaps on different FS sheets should be assumed; (ii) the effect of the spin-orbit coupling is of minor importance for the distributions of the near-Fermi electronic states; and (iii) this phase adopts 3D-like type owing to the directional bonds between the adjacent atomic sheets.
Very recently, the tetragonal BiOCuS was synthesized and declared as a new superconducting system with Fe-oxypnictide - related structure. Here, based on first-principle FLAPW-GGA calculations, the structural parameters, electronic bands picture, den sity of states and electron density distribution for BiOCuS are investigated for the first time. Our results show that, as distinct from related metallic-like FeAs systems, BiOCuS phase behaves as an ionic semiconductor with the calculated indirect band gap at about 0.48 eV. The superconductivity for BiOCuS may be achieved exclusively by doping of this phase. Our preliminary results demonstrate that as a result of hole doping, the [CuS] blocks become conducting owing to mixed Cu 3d + S 3p bands located near the Fermi level. For the hole doped BiOCuS the Fermi surface adopts a quasi-two-dimensional character, similarly to FeAs SCs.
169 - T. Sato , K. Nakayama , Y. Sekiba 2008
We have performed high-resolution angle-resolved photoemission spectroscopy on heavily overdoped KFe_2As_2 (transition temperature (Tc = 3 K). We observed several renormalized bands near the Fermi level with a renormalization factor of 2-4. While the Fermi surface (FS) around the Brillouin-zone center is qualitatively similar to that of optimally-doped Ba_{1-x}K_xFe_2As_2 (x = 0.4; Tc = 37 K), the FS topology around the zone corner (M point) is markedly different: the two electron FS pockets are completely absent due to excess of hole doping. This result indicates that the electronic states around the M point play an important role in the high-Tc superconductivity of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ and suggests that the interband scattering via the antiferromagnetic wave vector essentially controls the Tc value in the overdoped region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا