ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio study of the elastic and electronic properties of tetragonal Th2NiC2

114   0   0.0 ( 0 )
 نشر من قبل Igor Shein
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work reports on the elastic and electronic properties of the newly discovered superconductor Th2NiC2 (A .Machado, et al., Supercond. Sci. Technol. 25 (2012) 045010) as obtained within ab initio calculations. We found that Th2NiC2 is mechanically stable and it will behave as a ductile material exhibiting enhanced elastic anisotropy in shear and a rather low hardness Our data reveal that for Th2NiC2 the Fermi level is located in a deep DOS minimum and the experimentally observed increase in TC in the sequence Th2NiC2 -> Th1.8Sc0.2NiC2 may be explained by the growth of N(EF). We also speculate that (i) an increase in the hole concentration will promote exchange splitting of Ni 3d bands, therefore the hole-doped Th2NiC2 should have a certain concentration border, where a phase transition from the superconducting to the magnetic state will be expected, and (ii) an increase in N(EF) (and, probably, in TC) for Th2NiC2-based materials may be also achieved by an alternative way: by electron doping - for example, by partial substitution of V for Th or Cu for Ni, as well as by partial substitution of N for C with the formation of Th-Ni carbonitrides like Th2NiC2-xNx.



قيم البحث

اقرأ أيضاً

We present an ab initio $GW$ self-energy calculation of the electronic structure of LaNiO$_2$. With respect to density-functional theory we find that in $GW$ the La 4$f$ states undergo an important $+$2 eV upward shift from the Fermi level, while the O 2$p$ states are pulled down by $-$1.5 eV, thus reinforcing the charge-transfer character of this material. However, $GW$ many-body effects leave the $d$-like bands at the Fermi level almost unaffected, so that the Fermi-surface topology is preserved, unlike in cuprates.
Full-potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA) for the exchange-correlation potential has been applied for the study of structural, elastic and electronic properties of the newly synt hesized nitrogen-containing perovskite-like superconductor ZnNNi3. The optimized lattice parameter, independent elastic constants (C11, C12 and C44), bulk modulus B, compressibility betta, and shear modulus G are evaluated. The band structure, total and site- projected l- decomposed DOSs, the shape of the Fermi surface, the Sommerfeld coefficient and the molar Pauli paramagnetic susceptibility for this novel anti-perovskite are obtained and analyzed in comparison with related anti-perovskites ZnCNi3 and MgCNi3
We present results of density functional theory (DFT) calculation of the structural supermodulation in BSCCO-2212 structure, and show that the supermodulation is indeed a spontaneous symmetry breaking of the nominal crystal symmetry, rather than a ph enomenon driven by interstitial O dopants. The structure obtained is in excellent quantitative agreement with recent x-ray studies, and reproduces several qualitative aspects of scanning tunnelling microscopy (STM) experiments as well. The primary structural modulation affecting the CuO_2 plane is found to be a buckling wave of tilted CuO_5 half-octahedra, with maximum tilt angle near the phase of the supermodulation where recent STM experiments have discovered an enhancement of the superconducting gap. We argue that the tilting of the half-octahedra and concommitant planar buckling are directly modulating the superconducting pair interaction.
Density functional theory calculations within the generalized gradient approximation are employed to study the ground state of Co2FeAl. Various magnetic configurations are considered to find out its most stable phase. The ferromagnetic ground state o f the Co2FeAl is energetically observed with an optimized lattice constant of 5.70 {AA}. Thereafter, the system was subjected under uniform and non-uniform strains to see their effects on spin polarization (P) and half-metallicity. The effect of spin orbit coupling is considered in the present study. Half-metallicity (and 100 % P) is only retained under uniform strains started from 0 to +4%, and dropped rapidly from 90% to 16% for the negative strains started from -1% to -6%. We find that the present system is much sensitive under tetragonal distortions as half-metallicity (and 100% P) is preserved only for the cubic case. The main reason for the loss of half-metallicity is due to the shift of the bands with respect to the Fermi level. We also discuss the influence of these results on spintronics devices.
Electronic structure of FeGa3 has been studied using experiments and ab-initio calculations. Magnetization measurements show that FeGa3 is inherently diamagnetic in nature. Our studies indicate that the previously reported magnetic moment on the Fe a toms in FeGa3 is not an intrinsic property of FeGa3, but is primarily due to the presence of disorder, defects, grain boundaries etc that break the symmetry about the Fe dimers. Analysis of the results obtained from magnetic measurements, photoelectron spectroscopy, Fe K-edge X-ray absorption near edge spectroscopy and ab-initio calculations clearly indicates that, the effects of on-site Coulomb repulsion between the Fe 3d electrons do not play any role in determining the electronic and magnetic properties of FeGa3. Detailed analysis of results of single crystal and poycrystalline FeGa3, helps to resolve the discrepancy in the electronic and magnetic properties in FeGa3 existing in the literature, consistently.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا