ترغب بنشر مسار تعليمي؟ اضغط هنا

Peculiar velocities in the nearby Universe can be measured via the kinetic Sunyaev-Zeldovich (kSZ) effect. Using a statistical method based on an optimised cross-correlation with nearby galaxies, we extract the kSZ signal generated by plasma halo of galaxies from the Cosmic Microwave Background (CMB) temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP). Marginalising over the thermal Sunyaev-Zeldovich contribution from clusters of galaxies, possible unresolved point source contamination, and Galactic foregrounds (dust, synchrotron and free-free emission), we report a kSZ bulk flow signal present at the 90% confidence level in the seven-year WMAP data. When only galaxies within 50 Mpc/h are included in the kSZ template we find a bulk flow in the CMB frame of |V|=533 +/- 263 km/s, in the direction l=324 +/- 27, b=-7 +/- 17, consistent with bulk flow measurements on a similar scale using classical distance indicators. We show how this comparison constrains the (ionised) baryonic budget in the local universe. On very large (~ 500 Mpc/h) scales, we find a 95% upper limit of 470 km/s, inconsistent with some analyses of bulk flow of clusters from the kSZ. We estimate that the significance of the bulk flow signal may increase to 3-5 sigma using data from the PLANCK probe.
We generate the peculiar velocity field for the 2MASS Redshift Survey (2MRS) catalog using an orbit-reconstruction algorithm. The reconstructed velocities of individual objects in 2MRS are well-correlated with the peculiar velocities obtained from hi gh-precision observed distances within 3,000 km/s. We estimate the mean matter density to be 0.31 +/- 0.05 by comparing observed to reconstructed velocities in this volume. The reconstructed motion of the Local Group in the rest frame established by distances within 3,000 km/s agrees with the observed motion and is generated by fluctuations within this volume, in agreement with observations. Then, we reconstruct the velocity field of 2MRS in successively larger radii, to study the problem of convergence towards the CMB dipole. We find that less than half of the amplitude of the CMB dipole is generated within a volume enclosing the Hydra-Centaurus-Norma supercluster at around 40 Mpc/h. Although most of the amplitude of the CMB dipole seems to be recovered by 120 Mpc/h, the direction does not agree and hence we observe no convergence up to this scale. We develop a statistical model which allows us to estimate cosmological para meters from the reconstructed growth of convergence of the velocity of the Local Group towards the CMB dipole motion. For scales up to 60 Mpc/h, assuming a Local Group velocity of 627 km/s, we estimate Omega_m h^2 = 0.11 +/- 0.06 and sigma_8=0.9 +/- 0.4, in agreement with WMAP5 measurements at the 1-sigma level. However, for scales up to 100 Mpc/h, we obtain Omega_m h^2 = 0.08 +/- 0.03 and sigma_8=1.0 +/- 0.4, which agrees at the 1 to 2-sigma level with WMAP5 results. (abridged)
We present a purely geometrical method for probing the expansion history of the Universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the Universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed EUCLID mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the EUCLID wide survey may double that of all other dark energy probes derived from EUCLID data alone (combined with Planck priors). In particular, voids seem to outperform Baryon Acoustic Oscillations by an order of magnitude. This result is consistent with simple estimates based on mode-counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.
Peculiar velocities arise from gravitational instability, and thus are linked to the surrounding distribution of matter. In order to understand the motion of the Local Group with respect to the Cosmic Microwave Background, a deep all-sky map of the g alaxy distribution is required. Here we present a new redshift compilation of 69~160 galaxies, dubbed 2M++, to map large-scale structures of the Local Universe over nearly the whole sky, and reaching depths of K <= 12.5, or 200 Mpc/h. The target catalogue is based on the Two-Micron-All-Sky Extended Source Catalog (2MASS-XSC). The primary sources of redshifts are the 2MASS Redshift Survey, the 6dF galaxy redshift survey and the Sloan Digital Sky Survey (DR7). We assess redshift completeness in each region and compute the weights required to correct for redshift incompleteness and apparent magnitude limits, and discuss corrections for incompleteness in the Zone of Avoidance. We present the density field for this survey, and discuss the importance of large-scale structures such as the Shapley Concentration.
We describe a accurate and fast pixel-based statistical method to interpolate fields of arbitrary spin on the sphere. We call this method Fast and Lean Interpolation on the Sphere (FLINTS). The method predicts the optimal interpolated values based on the theory of isotropic Gaussian random fields and provides an accurate error estimate at no additional cost. We use this method to compute lensed Cosmic Microwave Background (CMB) maps precisely and quickly, achieving a relative precision of 0.02% at a HEALPix resolution of Nside=4096, for a bandlimit of l_max=4096 in the same time it takes to simulate the original, unlensed CMB map. The method is suitable for efficient, distributed memory parallelization. The power spectra of our lensed maps are accurate to better than 0.5% at l=3000 for the temperature, the E and B mode of the polarization. As expected theoretically, we demonstrate that, on realistic cases, this method is between two to three orders of magnitude more precise than other known interpolation methods for the same computational cost.
89 - Guilhem Lavaux 2009
We use the formalism of constrained Gaussian random field to compute a precise large scale simulation of the 60 Mpc/h volume of our Local Universe. We derive the constraints from the reconstructed peculiar velocities of the 2MASS Redshift Survey. We obtain a correlation of 0.97 between the log-density field of the dark matter distribution of the simulation and the log-density of observed galaxies of the Local Universe. We achieve a good comparison of the simulated velocity field to the observed velocity field obtained from the galaxy distances of the NBG-3k. At the end, we compare the two-point correlation function of both the 2MRS galaxies and of the dark matter particles of the simulation. We conclude that this method is a very promising technique of exploring the dynamics and the particularities the Universe in our neighbourhood.
123 - G. Lavaux 2007
The peculiar velocity reconstruction methods allow one to have a deeper insight into the distribution of dark matter: both to measure mean matter density and to obtain the primordial density fluctuations. We present here the Monge-Ampere-Kantorovitch method applied to mock catalogues mimicking in both redshift and distance catalogues. After having discussed the results obtained for a class of biases that may be corrected for, we focus on the systematics coming from the unknown distribution of unobserved mass and from the statistical relationship between mass and luminosity. We then show how to use these systematics to put constraints on the dark matter distribution. Finally a preliminary application to an extended version (c z < 3000 km/s) of the Neighbour Galaxy Catalogue is presented. We recover the peculiar velocities in our neighbourhood and present a preliminary measurement of the local Omega_M.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا