ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Local Volume data to constrain Dark Matter dynamics

123   0   0.0 ( 0 )
 نشر من قبل Guilhem Lavaux
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Lavaux




اسأل ChatGPT حول البحث

The peculiar velocity reconstruction methods allow one to have a deeper insight into the distribution of dark matter: both to measure mean matter density and to obtain the primordial density fluctuations. We present here the Monge-Ampere-Kantorovitch method applied to mock catalogues mimicking in both redshift and distance catalogues. After having discussed the results obtained for a class of biases that may be corrected for, we focus on the systematics coming from the unknown distribution of unobserved mass and from the statistical relationship between mass and luminosity. We then show how to use these systematics to put constraints on the dark matter distribution. Finally a preliminary application to an extended version (c z < 3000 km/s) of the Neighbour Galaxy Catalogue is presented. We recover the peculiar velocities in our neighbourhood and present a preliminary measurement of the local Omega_M.

قيم البحث

اقرأ أيضاً

We argue that observations of old neutron stars can impose constraints on dark matter candidates even with very small elastic or inelastic cross section, and self-annihilation cross section. We find that old neutron stars close to the galactic center or in globular clusters can maintain a surface temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates.
It was recently proposed that the globular cluster system of the very low surface-brightness galaxy NGC1052-DF2 is dynamically very cold, leading to the conclusion that this dwarf galaxy has little or no dark matter. Here, we show that a robust stati stical measure of the velocity dispersion of the tracer globular clusters implies a mundane velocity dispersion and a poorly constrained mass-to-light ratio. Models that include the possibility that some of the tracers are field contaminants do not yield a more constraining inference. We derive only a weak constraint on the mass-to-light ratio of the system within the half-light radius (M/L_V<6.7 at the 90% confidence level) or within the radius of the furthest tracer (M/L_V<8.1 at the 90% confidence level). This limit may imply a mass-to-light ratio on the low end for a dwarf galaxy but many Local Group dwarf galaxies fall well within this contraint. With this study, we emphasize the need to reliably account for measurement uncertainties and to stay as close as possible to the data when determining dynamical masses from very small data sets of tracers.
Galactic rotation curves are often considered the first robust evidence for the existence of dark matter. However, even in the presence of a dark matter halo, other galactic-scale observations, such as the Baryonic Tully-Fisher Relation and the Radia l Acceleration Relation, remain challenging to explain. This has motivated long-distance, infrared modifications to gravity as an alternative to the dark matter hypothesis as well as various DM theories with similar phenomenology. In general, the standard lore has been that any model that reduces to the phenomenology of MOdified Newtonian Dynamics (MOND) on galactic scales explains essentially all galaxy-scale observables. We present a framework to test precisely this statement using local Milky Way observables, including the vertical acceleration field, the rotation curve, the baryonic surface density, and the stellar disk profile. We focus on models that predict scalar amplifications of gravity, i.e., models that increase the magnitude but do not change the direction of the gravitational acceleration. We find that models of this type are disfavored relative to a simple dark matter halo model because the Milky Way data requires a substantial amplification of the radial acceleration with little amplification of the vertical acceleration. We conclude that models which result in a MOND-like force struggle to simultaneously explain both the rotational velocity and vertical motion of nearby stars in the Milky Way.
44 - R.J.H. Dunn IoA 2006
We revisit a method to obtain upper limits on the jet matter content combining synchrotron self-absorption constraints and the large scale bubble energy. We use both X-ray observations, which give limits on the jet power from the energies and timesca les of bubbles found in clusters of galaxies, and radio observations, which give limits on the magnetic field in the jets. Combining the two imposes constraints on the particle number density, and hence the jet content. Out of a sample of clusters which have clear radio bubbles, there are only two which have sufficient resolution in the radio images to give significant constraints, under the assumption that the jets are fairly steady. The results for M87 and Perseus indicate that the radio emitting region of the jet is electron-positron dominated, assuming that the minimum of the electron energy distribution, gamma_min~1.
The use of standard rulers, such as the scale of the Baryonic Acoustic oscillations (BAO), has become one of the more powerful techniques employed in cosmology to probe the entity driving the accelerating expansion of the Universe. In this paper, the topology of large scale structure (LSS) is used as one such standard ruler to study this mysterious `dark energy. By following the redshift evolution of the clustering of luminous red galaxies (LRGs) as measured by their 3D topology (counting structures in the cosmic web), we can chart the expansion rate and extract information about the equation of state of dark energy. Using the technique first introduced in (Park & Kim, 2009), we evaluate the constraints that can be achieved using 3D topology measurements from next-generation LSS surveys such as the Baryonic Oscillation Spectroscopic Survey (BOSS). In conjunction with the information that will be available from the Planck satellite, we find a single topology measurement on 3 different scales is capable of constraining a single dark energy parameter to within 5% and 10% when dynamics are permitted. This offers an alternative use of the data available from redshift surveys and serves as a cross-check for BAO studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا