ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic flow from 2MASS redshift survey: The origin of CMB dipole and implications for LCDM cosmology

338   0   0.0 ( 0 )
 نشر من قبل Guilhem Lavaux
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We generate the peculiar velocity field for the 2MASS Redshift Survey (2MRS) catalog using an orbit-reconstruction algorithm. The reconstructed velocities of individual objects in 2MRS are well-correlated with the peculiar velocities obtained from high-precision observed distances within 3,000 km/s. We estimate the mean matter density to be 0.31 +/- 0.05 by comparing observed to reconstructed velocities in this volume. The reconstructed motion of the Local Group in the rest frame established by distances within 3,000 km/s agrees with the observed motion and is generated by fluctuations within this volume, in agreement with observations. Then, we reconstruct the velocity field of 2MRS in successively larger radii, to study the problem of convergence towards the CMB dipole. We find that less than half of the amplitude of the CMB dipole is generated within a volume enclosing the Hydra-Centaurus-Norma supercluster at around 40 Mpc/h. Although most of the amplitude of the CMB dipole seems to be recovered by 120 Mpc/h, the direction does not agree and hence we observe no convergence up to this scale. We develop a statistical model which allows us to estimate cosmological para meters from the reconstructed growth of convergence of the velocity of the Local Group towards the CMB dipole motion. For scales up to 60 Mpc/h, assuming a Local Group velocity of 627 km/s, we estimate Omega_m h^2 = 0.11 +/- 0.06 and sigma_8=0.9 +/- 0.4, in agreement with WMAP5 measurements at the 1-sigma level. However, for scales up to 100 Mpc/h, we obtain Omega_m h^2 = 0.08 +/- 0.03 and sigma_8=1.0 +/- 0.4, which agrees at the 1 to 2-sigma level with WMAP5 results. (abridged)



قيم البحث

اقرأ أيضاً

Comparison of peculiar velocities of galaxies with their gravitational accelerations (induced by the density field) is one of the methods to constrain the redshift distortion parameter beta=(Omega_m^0.55)/b, where Omega_m is the non-relativistic matt er density parameter and b is the linear bias. In particular, one can use the motion of the Local Group (LG) for that purpose. Its peculiar velocity is known from the dipole component of the cosmic microwave background, whereas its acceleration can be estimated with the use of an all-sky galaxy catalog, from the so-called clustering dipole. At the moment, the biggest dataset of that kind is the Two Micron All Sky Survey Extended Source Catalog (2MASS XSC) containing almost 1 million galaxies and complete up to ~300 Mpc/h. We applied 2MASS data to measure LG acceleration and used two methods to estimate the beta parameter. Both of them yield beta~0.4 with an error of several per cent, which is the most precise determination of this parameter from the clustering dipole to date.
Previous studies have found our velocity in the rest frame of radio galaxies at high redshift to be substantially larger than that inferred from the CMB temperature dipole anisotropy. We construct a full sky catalogue NVSUMSS, by merging the NVSS and SUMSS catalogues and removing local sources by various means including cross-correlating with the 2MRS catalogue. We take into account both aberration and Doppler boost to deduce our velocity from the hemispherical number count asymmetry, as well as via a 3-dimensional linear estimator. Both the magnitude and direction depend on cuts made to the catalogue, e.g. on the lowest source flux, however these effects are small. With the hemispheric number count asymmetry method we obtain a velocity of 1729 $pm$ 187 km/s i.e. about 4 times larger than that obtained from the CMB dipole, but close in direction, towards RA=149 $pm$ 2 degree, DEC = -17 $pm$ 12 degree. With the 3-dimensional estimator, the derived velocity is 1355 $pm$ 174 km/s towards RA=141 $pm$ 11 degree, DEC=-9 $pm$ 10 degree. We assess the statistical significance of these results by constructing catalogues of random distributions and show that they are at best significant at the $2.81 sigma$ (99.95% confidence) level.
We compare the amplitudes of fluctuations probed by the 2dF Galaxy Redshift Survey and by the latest measurements of the Cosmic Microwave Background anisotropies. By combining the 2dFGRS and CMB data we find the linear-theory rms mass fluctuations in 8 Mpc/h spheres to be sigma_8 = 0.73 +-0.05 (after marginalization over the matter density parameter Omega_m and three other free parameters). This normalization is lower than the COBE normalization and previous estimates from cluster abundance, but it is in agreement with some revised cluster abundance determinations. We also estimate the scale-independent bias parameter of present-epoch L_s = 1.9L_* APM-selected galaxies to be b(L_s,z=0) = 1.10 +- 0.08 on comoving scales of 0.02 < k < 0.15 h/Mpc. If luminosity segregation operates on these scales, L_* galaxies would be almost un-biased, b(L_*,z=0) = 0.96. These results are derived by assuming a flat Lambda-CDM Universe, and by marginalizing over other free parameters and fixing the spectral index n=1 and the optical depth due to reionization tau=0. We also study the best fit pair (Omega_m,b), and the robustness of the results to varying n and tau. Various modelling corrections can each change the resulting b by 5-15 per cent. The results are compared with other independent measurements from the 2dFGRS itself, and from the SDSS, cluster abundance and cosmic shear.
59 - Adi Nusser 2017
The peculiar velocity of a mass tracer is on average aligned with the dipole modulation of the surrounding mass density field. We present a first measurement of the correlation between radial peculiar velocities of objects in the cosmicflows-3 catalo g and the dipole moment of the 2MRS galaxy distribution in concentric spherical shells centered on these objects. Limiting the analysis to cosmicflows-3 objects with distances of $100 rm Mpc h^{-1}$, the correlation function is detected at a confidence level $> 4sigma$. The measurement is found consistent with the standard $Lambda$CDM model at $< 1.7sigma$ level. We formally derive the constraints $0.32<Omega^{0.55}sigma_8<0.48$ ($68% $ confidence level) or equivalently $0.34<Omega^{0.55}/b<0.52$, where $b$ is the galaxy bias factor. Deeper and improved peculiar velocity catalogs will substantially reduce the uncertainties, allowing tighter constraints from this type of correlations.
The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations be tween a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within galaxies. The second analysis searches for low-luminosity sources within the local universe, which would produce subthreshold multiplets in the IceCube dataset that directionally correlate with galaxy distribution. No significant correlations were observed in either analyses. Constraints are presented on the flux of neutrinos originating within the local universe through diffuse intergalactic UHECR interactions, as well as on the density of standard candle sources of neutrinos at low luminosities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا