ﻻ يوجد ملخص باللغة العربية
We present a purely geometrical method for probing the expansion history of the Universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the Universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed EUCLID mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the EUCLID wide survey may double that of all other dark energy probes derived from EUCLID data alone (combined with Planck priors). In particular, voids seem to outperform Baryon Acoustic Oscillations by an order of magnitude. This result is consistent with simple estimates based on mode-counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.
We report novel cosmological constraints obtained from cosmic voids in the final BOSS DR12 dataset. They arise from the joint analysis of geometric and dynamic distortions of average void shapes (i.e., the stacked void-galaxy cross-correlation functi
A signature of the dark energy equation of state may be observed in the shape of voids. We estimate the constraints on cosmological parameters that would be determined from the ellipticity distribution of voids from future spectroscopic surveys alrea
Einstein Telescope (ET) is a 3rd generation gravitational-wave (GW) detector that is currently undergoing a design study. ET can detect millions of compact binary mergers up to redshifts 2-8. A small fraction of mergers might be observed in coinciden
A method to set constraints on the parameters of extended theories of gravitation is presented. It is based on the comparison of two series expansions of any observable that depends on H(z). The first expansion is of the cosmographical type, while th
Cosmography provides a model-independent way to map the expansion history of the Universe. In this paper we simulate a Euclid-like survey and explore cosmographic constraints from future Baryonic Acoustic Oscillations (BAO) observations. We derive ge