ترغب بنشر مسار تعليمي؟ اضغط هنا

124 - G. Cao , T. F. Qi , L. Li 2013
We synthesize and study single crystals of a new double-perovskite Sr2YIrO6. Despite two strongly unfavorable conditions for magnetic order, namely, pentavalent Ir5+(5d4) ions which are anticipated to have Jeff=0 singlet ground states in the strong s pin-orbit coupling (SOC) limit, and geometric frustration in a face centered cubic structure formed by the Ir5+ ions, we observe this iridate to undergo a novel magnetic transition at temperatures below 1.3 K. We provide compelling experimental and theoretical evidence that the origin of magnetism is in an unusual interplay between strong non-cubic crystal fields and intermediate-strength SOC. Sr2YIrO6 provides a rare example of the failed dominance of SOC in the iridates.
216 - O.B. Korneta , T. F. Qi , M. Ge 2010
Hexagonal perovskite 15R-BaMnO2.99 with a ratio of cubic to hexagonal layers of 1/5 in the unit cell is an antiferromagnetic insulator that orders at a Neel temperature TN = 220 K. Here we report structural, magnetic, dielectric and thermal propertie s of single crystal BaMnO2.99 and its derivatives BaMn0.97Li0.03O3 and Ba0.97K0.03MnO3. The central findings of this work are: (1) these materials possess a usually large, high-temperature magnetoelectric effect that amplifies the dielectric constant by more than an order of magnitude near their respective Neel temperature; (2) Li and K doping can readily vary the ratio of cubic to hexagonal layers and cause drastic changes in dielectric and magnetic properties; in particular, a mere 3% Li substitution for Mn significantly weakens the magnetic anisotropy and relaxes the lattice; consequently, the dielectric constant for both the a- and c-axis sharply rises to 2500 near the Neel temperature. This lattice softening is also accompanied by weak polarization. These findings provide a new paradigm for developing novel, high-temperature magnetoelectric materials that may eventually contribute to technology.
142 - T.F. Qi , O.B. Korneta , S. Parkin 2010
Ca2RuO4 undergoes a metal-insulator transition at TMI = 357 K, followed by a well-separated transition to antiferromagnetic order at TN = 110 K. Dilute Cr doping for Ru reduces the temperature of the orthorhombic distortion at TMI and induces ferroma gnetic behavior at TC. The lattice volume V of Ca2Ru1-xCrxO4 (0 < x < 0.13) abruptly expands with cooling at both TMI and TC, giving rise to a total volume expansion {Delta}V/V {simeq} 1 %, which sharply contrasts the smooth temperature dependence of the few known examples of negative volume thermal expansion driven by anharmonic phonon modes. In addition, the near absence of volume thermal expansion between TC and TMI represents an Invar effect. The two phase transitions suggest an exotic ground state driven by an extraordinary coupling between spin, orbit and lattice degrees of freedom.
Stoichiometric Sr2IrO4 is a ferromagnetic Jeff = 1/2 Mott insulator driven by strong spin-orbit coupling. Introduction of very dilute oxygen vacancies into single-crystal Sr2IrO4-delta with delta < 0.04 leads to significant changes in lattice paramet ers and an insulator-to-metal transition at TMI = 105 K. The highly anisotropic electrical resistivity of the low-temperature metallic state for delta ~ 0.04 exhibits anomalous properties characterized by non-Ohmic behavior and an abrupt current-induced transition in the resistivity at T* = 52 K, which separates two regimes of resisitive switching in the nonlinear I-V characteristics. The novel behavior illustrates an exotic ground state and constitutes a new paradigm for devices structures in which electrical resistivity is manipulated via low-level current densities ~ 10 mA/cm2 (compared to higher spin-torque currents ~ 107-108 A/cm2) or magnetic inductions ~ 0.1-1.0 T.
BaIrO3 is a novel insulator with coexistent weak ferromagnetism, charge and spin density wave. Dilute RE doping for Ba induces a metallic state, whereas application of modest pressure readily restores an insulating state characterized by a three-orde r-of-magnitude increase of resistivity. Since pressure generally increases orbital overlap and broadens energy bands, a pressure-induced insulating state is not commonplace. The profoundly dissimilar responses of the ground state to light doping and low hydrostatic pressures signal an unusual, delicate interplay between structural and electronic degrees of freedom in BaIrO3.
Our magnetic, electrical, and thermal measurements on single-crystals of the novel Mott insulator, Sr2IrO4, reveal a novel giant magneto-electric effect (GME) arising from a frustrated magnetic/ferroelectric state whose signatures are: (1) a strongly enhanced electric permittivity that peaks near a newly observed magnetic anomaly at 100 K, (2) a large (~100%) magneto-dielectric shift that occurs near a metamagnetic transition, and (3) magnetic and electric polarization hysteresis. The GME and electric polarization hinge on a spin-orbit gapping of 5d-bands, rather than the magnitude and spatial dependence of magnetization, as traditionally accepted.
48 - G. Cao , O. Korneta , S. Chikara 2008
We report calorimetric, magnetic and electric transport properties of single-crystal CaRuO3 and SrRuO3 as a function of temperature T and applied magnetic field B. We find that CaRuO3 is a non-Fermi-liquid metal near a magnetic instability, as charac terized by the following properties: (1) the heat capacity C(T,B) ~ -T log T is readily enhanced in low applied fields, and exhibits a Schottky peak at 2.3 K that exhibits field dependence when T is reduced; (2) the magnetic susceptibility diverges as T^-x at low temperatures with 1/2 < x < 1, depending on the applied field; and (3) the electrical resistivity exhibits a T3/2 dependence over the range 1.7 < T < 24 K. No Shubnikov-de Haas oscillations are discerned at T = 0.65 K for applied fields up to 45 T. These properties, which sharply contrast those of the itinerant ferromagnet SrRuO3, indicate CaRuO3 is a rare example of a stoichiometric oxide compound that exhibits non-Fermi-liquid behavior near a quantum critical point.
64 - G. Cao , V. Durairaj , S. Chikara 2007
The spin valve effect is a quantum phenomenon so far only realized in multilayer thin films or heterostructures. Here we report a strong spin valve effect existing in bulk single crystals of Ca3(Ru1-xCrx)2O7 having an anisotropic, bilayered crystal s tructure. This discovery opens new avenues to understand the underlying physics of spin valves, and fully realize its potential in practical devices.
66 - G. Cao , V. Durairaj , S. Chikara 2007
We report transport and thermodynamic properties of single-crystal SrIrO3 as a function of temperature T and applied magnetic field H. We find that SrIrO3 is a non-Fermi-liquid metal near a ferromagnetic instability, as characterized by the following properties: (1) small ordered moment but no evidence for long-range order down to 1.7 K; (2) strongly enhanced magnetic susceptibility that diverges as T or T1/2 at low temperatures, depending on the applied field; (3) heat capacity C(T,H) ~ -Tlog T that is readily amplified by low applied fields; (4) a strikingly large Wilson ratio at T< 4K; and (5) a T3/2-dependence of electrical resistivity over the range 1.7 < T < 120 K. A phase diagram based on the data implies SrIrO3 is a rare example of a stoichiometric oxide compound that exhibits non-Fermi-liquid behavior near a quantum critical point (T = 0 and H = 0.23 T).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا