ﻻ يوجد ملخص باللغة العربية
BaIrO3 is a novel insulator with coexistent weak ferromagnetism, charge and spin density wave. Dilute RE doping for Ba induces a metallic state, whereas application of modest pressure readily restores an insulating state characterized by a three-order-of-magnitude increase of resistivity. Since pressure generally increases orbital overlap and broadens energy bands, a pressure-induced insulating state is not commonplace. The profoundly dissimilar responses of the ground state to light doping and low hydrostatic pressures signal an unusual, delicate interplay between structural and electronic degrees of freedom in BaIrO3.
We have investigated the effect of pressure on the electronic, magnetic, and structural properties on a single crystal of conducting, ferromagnet (T$_{C}$=157K) La$_{0.82}$Sr$_{0.18}$CoO$_{3}$ located near the boundary of the metal-insulator transiti
The effects of Ni doping in Eu(Co{1-x}Ni{x})2As2 single crystals with x =0 to 1 grown out of self flux are investigated via crystallographic, electronic transport, magnetic, and thermal measurements. All compositions adopt the body-centered-tetragona
The perovskite antiferromagnetic ($T_{rm N}$ $sim$ 220 K) insulator EuNiO$_3$ undergoes at ambient pressure a metal-to-insulator transition at $T_{rm MI}$ = 460 K which is associated with a simultaneous orthorhombic-to-monoclinic distortion, leading
By performing high-pressure single-crystal neutron diffraction measurements, the evolution of structure and magnetic ordering in EuFe2As2 under hydrostatic pressure were investigated. Both the tetragonal-toorthorhombic structural transition and the F
The magnetic ground state of the Eu$^{2+}$ moments in a series of Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals grown from the Sn flux has been investigated in detail by neutron diffraction measurements. Combined with the results from the macr