ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-Induced Insulating State in Ba1-xRExIrO3 (RE = Gd, Eu) Single Crystals

145   0   0.0 ( 0 )
 نشر من قبل Gang Cao
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

BaIrO3 is a novel insulator with coexistent weak ferromagnetism, charge and spin density wave. Dilute RE doping for Ba induces a metallic state, whereas application of modest pressure readily restores an insulating state characterized by a three-order-of-magnitude increase of resistivity. Since pressure generally increases orbital overlap and broadens energy bands, a pressure-induced insulating state is not commonplace. The profoundly dissimilar responses of the ground state to light doping and low hydrostatic pressures signal an unusual, delicate interplay between structural and electronic degrees of freedom in BaIrO3.

قيم البحث

اقرأ أيضاً

We have investigated the effect of pressure on the electronic, magnetic, and structural properties on a single crystal of conducting, ferromagnet (T$_{C}$=157K) La$_{0.82}$Sr$_{0.18}$CoO$_{3}$ located near the boundary of the metal-insulator transiti on. Contrary to the results reported on related systems, we find a transition from the conducting state to an insulating state and a decrease of T$_{C}$ with increasing pressure while the lattice structure remains unchanged. We show that this unusual behavior is driven by a gradual change of the spin state of Co$^{3+}$ ions from magnetic intermediate-spin (t$_{2g}^5$e$_{g}^{1}$; S=1) to a nonmagnetic low-spin (t$_{2g}^6$e$_{g}^{0}$; S=0) state.
The effects of Ni doping in Eu(Co{1-x}Ni{x})2As2 single crystals with x =0 to 1 grown out of self flux are investigated via crystallographic, electronic transport, magnetic, and thermal measurements. All compositions adopt the body-centered-tetragona l ThCr2Si2 structure with space group I4/mmm. We also find 3-4% of randomly-distributed vacancies on the Co/Ni site. Anisotropic magnetic susceptibility chi(T) data versus temperature T show clear signatures of an antiferromagnetic (AFM) c-axis helix structure associated with the Eu{+2} spins-7/2 for x = 0 and x = 1 as previously reported. The chi(T) data for x = 0.03 and 0.10 suggest an anomalous 2q magnetic structure containing two helix axes along the c axis and in the ab plane, respectively, whereas for x = 0.75 and 0.82, a c-axis helix is inferred as previously found for x = 0 and 1. At intermediate compositions x = 0.2, 0.32, 0.42, 0.54, and 0.65 a magnetic structure with a large ferromagnetic (FM) c-axis component is found from magnetization versus field isotherms, suggested to be an incommensurate FM cone structure associated with the Eu spins, which consists of both AFM and FM components. In addition, the chi(T) and heat capacity data for x = 0.2--0.65 indicate the occurrence of itinerant FM order associated with the Co/Ni atoms with Curie temperatures from 60 K to 25 K, respectively. Electrical resistivity measurements indicate metallic character for all compositions with abrupt increases in slope on cooling below the Eu AFM transition temperatures. In addition to this panoply of magnetic transitions, {151}Eu Mossbauer measurements indicate that ordering of the Eu moments proceeds via an incommensurate sine amplitude-modulated structure with additional transition temperatures associated with this effect.
The perovskite antiferromagnetic ($T_{rm N}$ $sim$ 220 K) insulator EuNiO$_3$ undergoes at ambient pressure a metal-to-insulator transition at $T_{rm MI}$ = 460 K which is associated with a simultaneous orthorhombic-to-monoclinic distortion, leading to charge disproportionation. We have investigated the change of the structural and magnetic properties of EuNiO$_3$ with pressure (up to $sim$ 20 GPa) across its quantum critical point (QCP) using low-temperature synchrotron angle-resolved x-ray diffraction and $^{151}$Eu nuclear forward scattering of synchrotron radiation, respectively. With increasing pressure we find that after a small increase of $T_{rm N}$ ($p$ $leq$ 2 GPa) and the induced magnetic hyperfine field $B_{rm hf}$ at the $^{151}$Eu nucleus ($p$ $leq$ 9.7 GPa), both $T_{rm N}$ and $B_{rm hf}$ are strongly reduced and finally disappear at $p_{rm c}$ $cong$ 10.5 GPa, indicating a magnetic QCP at $p_{rm c}$. The analysis of the structural parameters up to 10.5 GPa reveals no change of the lattice symmetry within the experimental resolution. Since the pressure-induced insulator-to-metal transition occurs at $p_{rm IM}$ $cong$ 6 GPa, this result implies the existence of an antiferromagnetic metallic state between 6 and 10.5 GPa. We further show from the analysis of the reported high pressure electrical resistance data on EuNiO$_3$ at low-temperatures that in the vicinity of the QCP the system behaves as non-Fermi-liquid, with the resistance changing as $T^{rm n}$, with n=1.6, whereas it becomes a normal Fermi-liquid, n = 2, for pressures above $sim$15 GPa. On the basis of the obtained data a magnetic phase diagram in the ($p$, $T$) space is suggested.
108 - W. T. Jin , Y. Xiao , S. Nandi 2019
By performing high-pressure single-crystal neutron diffraction measurements, the evolution of structure and magnetic ordering in EuFe2As2 under hydrostatic pressure were investigated. Both the tetragonal-toorthorhombic structural transition and the F e spin-density-wave (SDW) transition are gradually suppressed and become decoupled with increasing pressure. The antiferromagnetic order of the Eu sublattice is, however, robust against the applied pressure up to 24.7 kbar, without showing any change of the ordering temperature. Under the pressure of 24.7 kbar, the lattice parameters of EuFe2As2 display clear anomalies at 27(3) K, well consistent with the superconducting transition observed in previous high-pressure resistivity measurements. Such an anomalous thermal expansion around Tc strongly suggests the appearance of bulk superconductivity and strong electron-lattice coupling in EuFe2As2 induced by the hydrostatic pressure. The coexistence of long-range ordered Eu-antiferromagnetism and pressure-induced superconductivity is quite rare in the EuFe2As2-based iron pnictides.
86 - W. T. Jin , Y. Xiao , Z. Bukowski 2016
The magnetic ground state of the Eu$^{2+}$ moments in a series of Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals grown from the Sn flux has been investigated in detail by neutron diffraction measurements. Combined with the results from the macr oscopic properties (resistivity, magnetic susceptibility and specific heat) measurements, a phase diagram describing how the Eu magnetic order evolves with Co doping in Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ is established. The ground-state magnetic structure of the Eu$^{2+}$ spins is found to develop from the A-type antiferromagnetic (AFM) order in the parent compound, via the A-type canted AFM structure with some net ferromagnetic (FM) moment component along the crystallographic $mathit{c}$ direction at intermediate Co doping levels, finally to the pure FM order at relatively high Co doping levels. The ordering temperature of Eu declines linearly at first, reaches the minimum value of 16.5(2) K around $mathit{x}$ = 0.100(4), and then reverses upwards with further Co doping. The doping-induced modification of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu$^{2+}$ moments, which is mediated by the conduction $mathit{d}$ electrons on the (Fe,Co)As layers, as well as the change of the strength of the direct interaction between the Eu$^{2+}$ and Fe$^{2+}$ moments, might be responsible for the change of the magnetic ground state and the ordering temperature of the Eu sublattice. In addition, for Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals with 0.10 $leqslant$ $mathit{x}$ $leqslant$ 0.18, strong ferromagnetism from the Eu sublattice is well developed in the superconducting state, where a spontaneous vortex state is expected to account for the compromise between the two competing phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا