ﻻ يوجد ملخص باللغة العربية
Our magnetic, electrical, and thermal measurements on single-crystals of the novel Mott insulator, Sr2IrO4, reveal a novel giant magneto-electric effect (GME) arising from a frustrated magnetic/ferroelectric state whose signatures are: (1) a strongly enhanced electric permittivity that peaks near a newly observed magnetic anomaly at 100 K, (2) a large (~100%) magneto-dielectric shift that occurs near a metamagnetic transition, and (3) magnetic and electric polarization hysteresis. The GME and electric polarization hinge on a spin-orbit gapping of 5d-bands, rather than the magnitude and spatial dependence of magnetization, as traditionally accepted.
Spin-orbit entangled magnetic dipoles, often referred to as pseudospins, provide a new avenue to explore novel magnetism inconceivable in the weak spin-orbit coupling limit, but the nature of their low-energy interactions remains to be understood. We
X-ray absorption near edge spectra (XANES) and magnetization of Zn doped MnV2O4 have been measured and from the magnetic measurement the critical exponents and magnetocaloric effect have been estimated. The XANES study indicates that Zn doping does n
We investigated electronic structure of 5d transition-metal oxide Sr2IrO4 using angle-resolved photoemission, optical conductivity, and x-ray absorption measurements and first-principles band calculations. The system was found to be well described by
In Mott insulators, the strong electron-electron Coulomb repulsion prevents metallicity and charge excitations are gapped. In dimensions greater than one, their spins are usually ordered antiferromagnetically at low temperatures. Geometrical frustrat
We report a La2CuO4-like interlayer antiferromagnetic order in Sr2IrO4 films with large orthorhombic distortion (> 1.5%). The biaxial lattice strain in epitaxial heterostructures of Sr2IrO4/Ca3Ru2O7 lowers the crystal symmetry of Sr2IrO4 from tetrago