ترغب بنشر مسار تعليمي؟ اضغط هنا

Decisive Influence of Cation Size on the Magnetic Groundstate and Non-Fermi Liquid Behavior of ARuO3 (A = Ca, Sr)

48   0   0.0 ( 0 )
 نشر من قبل Gang Cao
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report calorimetric, magnetic and electric transport properties of single-crystal CaRuO3 and SrRuO3 as a function of temperature T and applied magnetic field B. We find that CaRuO3 is a non-Fermi-liquid metal near a magnetic instability, as characterized by the following properties: (1) the heat capacity C(T,B) ~ -T log T is readily enhanced in low applied fields, and exhibits a Schottky peak at 2.3 K that exhibits field dependence when T is reduced; (2) the magnetic susceptibility diverges as T^-x at low temperatures with 1/2 < x < 1, depending on the applied field; and (3) the electrical resistivity exhibits a T3/2 dependence over the range 1.7 < T < 24 K. No Shubnikov-de Haas oscillations are discerned at T = 0.65 K for applied fields up to 45 T. These properties, which sharply contrast those of the itinerant ferromagnet SrRuO3, indicate CaRuO3 is a rare example of a stoichiometric oxide compound that exhibits non-Fermi-liquid behavior near a quantum critical point.

قيم البحث

اقرأ أيضاً

Longitudinal-field muon spin relaxation (LF-muSR) experiments have been performed in unannealed and annealed samples of the heavy-fermion compound UCu_4Pd to study the effect of disorder on non-Fermi liquid behavior in this material. The muon spin re laxation functions G(t,H) obey the time-field scaling relation G(t,H) = G(t/H^gamma) previously observed in this compound. The observed scaling exponent gamma = 0.3 pm 0.1, independent of annealing. Fits of the stretched-exponential relaxation function G(t) = exp[-(Lambda t)^K] to the data yielded stretching exponentials K < 1 for all samples. Annealed samples exhibited a reduction of the relaxation rate at low temperatures, indicating that annealing shifts fluctuation noise power to higher frequencies. There was no tendency of the inhomogeneous spread in rates to decrease with annealing, which modifies but does not eliminate the glassy spin dynamics reported previously in this compound. The correlation with residual resistivity previously observed for a number of NFL heavy-electron materials is also found in the present work.
We present a comprehensive angle-resolved photoemission spectroscopy study of Ca$_{1.8}$Sr$_{0.2}$RuO$_4$. Four distinct bands are revealed and along the Ru-O bond direction their orbital characters are identified through a light polarization analysi s and comparison to dynamical mean-field theory calculations. Bands assigned to $d_{xz}, d_{yz}$ orbitals display Fermi liquid behavior with fourfold quasiparticle mass renormalization. Extremely heavy fermions - associated with a predominantly $d_{xy}$ band character - are shown to display non-Fermi-liquid behavior. We thus demonstrate that Ca$_{1.8}$Sr$_{0.2}$RuO$_4$ is a hybrid metal with an orbitally selective Fermi liquid quasiparticle breakdown.
We report measurements of the bulk magnetic susceptibility and ^{29}Si nuclear magnetic resonance (NMR) linewidth in the heavy-fermion alloy CeRhRuSi_2. The linewidth increases rapidly with decreasing temperature and reaches large values at low tempe ratures, which strongly suggests the wide distributions of local susceptibilities chi_j obtained in disorder-driven theories of non-Fermi-liquid (NFL) behavior. The NMR linewidths agree well with distribution functions P(chi) which fit bulk susceptibility and specific heat data. The apparent return to Fermi-liquid behavior observed below 1 K is manifested in the vanishing of P(chi) as chi to infty, suggesting the absence of strong magnetic response at low energies. Our results indicate the need for an extension of some current theories of disorder-driven NFL behavior in order to incorporate this low-temperature crossover.
The Weyl semimetallic compound Eu2Ir2O7 along with its hole doped derivatives (which is achieved by substituting trivalent Eu by divalent Sr) are investigated through transport, magnetic and calorimetric studies. The metal-insulator transition (MIT) temperature is found to get substantially reduced with hole doping and for 10% Sr doping the composition is metallic down to temperature as low as 5 K. These doped compounds are found to violate the Mott-Ioffe-Regel condition for minimum electrical conductivity and show distinct signature of non-Fermi liquid behavior at low temperature. The MIT in the doped compounds does not correlate with the magnetic transition point and Anderson-Mott type disorder induced localization may be attributed to the ground state insulating phase. The observed non-Fermi liquid behavior can be understood on the basis of disorder induced distribution of spin orbit coupling parameter which is markedly different in case of Ir4+ and Ir5+ ions.
The reflectivity of the itinerant ferromagnet SrRuO_3 has been measured between 50 and 25,000 cm-1 at temperatures ranging from 40 to 300 K, and used to obtain conductivity, scattering rate, and effective mass as a function of frequency and temperatu re. We find that at low temperatures the conductivity falls unusually slowly as a function of frequency (proportional to omega^{-1/2}), and at high temperatures it even appears to increase as a function of frequency in the far-infrared limit. The data suggest that the charge dynamics of SrRuO_3 are substantially different from those of Fermi-liquid metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا