ترغب بنشر مسار تعليمي؟ اضغط هنا

59 - Y. Osone 2007
We will describe the thermal performance of power semiconductor module, which consists of hetero-junction bipolar transistors (HBTs), for mobile communication systems. We calculate the thermal resistance between the HBT fingers and the bottom surface of a multi-layer printed circuit board (PCB) using a finite element method (FEM). We applied a steady state analysis to evaluate the influence of design parameters on thermal resistance of the module. We found that the thickness of GaAs substrate, the thickness of multi-layer circuit board, the thermal conductivity of bonding material under GaAs substrate, and misalignment of thermal vias between each layer of PCB are the dominant parameter in thermal resistance of the module.
45 - Y. Lai , N. Cordero , F. Barthel 2007
With the advances in the technology of materials based on GaN, high brightness white light emitting diodes (LEDs) have flourished over the past few years and have shown to be very promising in many new illumination applications such as outdoor illumi nation, task and decorative lighting as well as aircraft and automobile illuminations. The objective of this paper is to investigate an active liquid cooling solution of such LEDs in an application of automotive headlights. The thermal design from device to board to system level has been carried out in this research. Air cooling and passive liquid cooling methods are investigated and excluded as unsuitable, and therefore an active liquid cooling solution is selected. Several configurations of the active liquid cooling system are studied and optimisation work has been carried out to find an optimum thermal performance.
Using the finite volume CFD software FLUENT, one fan was studied at a given flow rate (1.5m3/min) for three different operational rotating speeds : 2,000, 2,350 and 2,700 rpm. The turbulent air flow analysis predicts the acoustic behavior of the fan. The best fan operating window, i.e. the one giving the best ratio between noise emissions and cooling performance, can then be determined. The broadband noise acoustic model is used. As the computation is steady state, a simple Multiple Reference Frame model (MRF, also known as stationary rotor approach) is used to represent the fan. This approach is able to capture the effects of the flow non-uniformity at the fan inlet together with their impact on the fan performance. Furthermore, it is not requiring a fan curve as an input to the model. When compared to the available catalog data the simulation results show promising qualitative agreement that may be used for fan design and selection purposes.
88 - G. Mura , G. Cassanelli 2007
Starting from two case histories, where only after thorough Failure Analysis the suddenly appearance of a failure was linked to much earlier events, the possibility of improving the reliability and of adjusting the reliability prediction tools are discussed.
In this paper the methodology and the results of creating temperature dependent battery models for ambient intelligence applications is presented. First the measurement technology and the model generation process is presented in details, and then the characteristic features of the models are discussed.
The recent development of electric and electronic devices has been remarkable. The miniaturization of electronic devices and high integration are progressing by advances in mounting technology. As a result, the reliability of fatigue life has been pr ioritized as an important concern, since the thermal expansion difference between a package and printed circuit board causes thermal fatigue. It is demanded a long-life product which has short development time. However, it is difficult because of interaction between each design factor. The authors have investigated the influence of various design factors on the reliability of soldered joints in BGA model by using response surface method and cluster analysis. By using these techniques, the interaction of all design factors was clarified. Based upon the analytical results, design engineers can rate each factors effect on reliability and assess the reliability of their basic design plan at the concept design stage.
97 - D. Benoy 2007
This paper presents a study of accuracy issues in thermal modeling of high power LED modules on system level. Both physical as well as numerical accuracy issues are addressed. Incorrect physical assumptions may result in seemingly correct, but errone ous results. It is therefore important to motivate the underlying key physical assumptions of a thermal model. In this paper thermal measurements are used to calibrate a computational fluid dynamics (CFD) model of a high power LED module model at a reference application condition, and to validate it at other application conditions.
This paper presents the consideration of the presence and the influence of non-linear distortion of photo-acoustic measurement set-up on the results of thermal properties analysis for the multi-layer semiconductor structure. The authors propose a method which will eliminate such an influence.
114 - C. Sapia 2007
The aim of this work is to develop a simple optical method for the visualization of the natural convection flow generated in an electronic system during its normal operation. The presented experimental set-up allows to reveal local refractive index c hanges in a phase objects. A fringe pattern is acquired, through the cooling fluid under analysis, with a digital camera two times: the first one with the fluid at rest, the second one with the thermal load due to the electronic device normal operation. By the means of the MATLAB processing of the acquired images it’s possible to reveal the shape and the directions of the thermal flow lines for the cooling fluid. In this way we can obtain a deeper understanding of the optimal convection working volume or information for the optimization of the relative spatial positioning of the several electronic components in a complex electronic system, like a printed circuit board (PCB). The proposed technique has been tested on two typical heat extraction situations recurrent in the electronic devices. In this paper are presented the experimental results of the visualization of the convective flow, in air, for an heat sink and a power resistor.
89 - J. Das , H. Oprins , H. Ji 2007
Galliumnitride has become a strategic superior material for space, defense and civil applications, primarily for power amplification at RF and mm-wave frequencies. For AlGaN/GaN high electron mobility transistors (HEMT), an outstanding performance co mbined together with low cost and high flexibility can be obtained using a System-in-a-Package (SIP) approach. Since thermal management is extremely important for these high power applications, a hybrid integration of the HEMT onto an AlN carrier substrate is proposed. In this study we investigate the temperature performance for AlGaN/GaN HEMTs integrated onto AlN using flip-chip mounting. Therefore, we use thermal simulations in combination with experimental results using micro-Raman spectroscopy and electrical dc-analysis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا