ترغب بنشر مسار تعليمي؟ اضغط هنا

The method of non-linear distortions elimination in photoacoustic investigation of layered semiconductor structure

204   0   0.0 ( 0 )
 نشر من قبل Francoise Heres-Renzetti
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the consideration of the presence and the influence of non-linear distortion of photo-acoustic measurement set-up on the results of thermal properties analysis for the multi-layer semiconductor structure. The authors propose a method which will eliminate such an influence.

قيم البحث

اقرأ أيضاً

The structure and mobility of dislocations in the layered semiconductor InSe is studied within a multiscale approach based on generalized Peierls--Nabarro model with material-specific parametrization derived from first principles. The plasticity of I nSe turns out to be attributed to peculiarities of the generalized stacking fault relief for the interlayer dislocation slips such as existence of the stacking fault with a very low energy and low energy barriers. Our results give a consistent microscopic explanation of recently observed [Science {bf 369}, 542 (2020)] exceptional plasticity of InSe.
We report synthesis of single crystalline NaMnAs, confirm its antiferromagnetic order and characterise the sample by photoemission spectroscopy. The electronic structure was studied using optical transmittance, x-ray and ultraviolet spectroscopy and by theoretical modeling using local density approximation (LDA) extended to LDA+U when Heisenberg model parameters were determined. Optical transmittance measurement have confirmed the theoretical predictions that NaMnAs is a semiconductor. Also the Neel temperature was closer determined for the first time from temperature dependence of magnetization, in agreement with our Monte Carlo simulations.
Two-dimensional (2D) materials are promising candidates for next-generation electronic devices. In this regime, insulating 2D ferromagnets, which remain rare, are of special importance due to their potential for enabling new device architectures. Her e we report the discovery of ferromagnetism in a layered van der Waals semiconductor, VI3, which is based on honeycomb vanadium layers separated by an iodine-iodine van der Waals gap. It has a BiI3-type structure (R-3, No.148) at room temperature, and our experimental evidence suggests that it may undergo a subtle structural phase transition at 78 K. VI3 becomes ferromagnetic at 49 K, below which magneto-optical Kerr effect imaging clearly shows ferromagnetic domains, which can be manipulated by the applied external magnetic field. The optical band gap determined by reflectance measurements is 0.6 eV, and the material is highly resistive.
The unprecedented structural flexibility and diversity of inorganic frameworks of layered hybrid halide perovskites (LHHPs) rise up a wide range of useful optoelectronic properties thus predetermining the extraordinary high interest to this family of materials. Nevertheless, the influence of different types of distortions of their inorganic framework on key physical properties such as band gap has not yet been quantitatively identified. We provided a systematic study of the relationships between LHHPs band gaps and six main structural descriptors of inorganic framework, including interlayer distances (dint), in-plane and out-of-plane distortion angles in layers of octahedra ({theta}in,{theta}out), layer shift factor (LSF), axial and equatorial Pb-I bond distances (dax,deq). Using the set on the selected structural distortions we realized the inverse materials design based on multi-step DFT and machine learning approach to search LHHPs with target values of the band gap. The analysis of calculated descriptors band gap dependences for the wide range of generated model structures of (100) single-layered LHHPs results in the following descending order of their importance:dint > {theta}in > dax > LSFmin > {theta}out > deq > LSFmax, and also implies a strong interaction value for some pairs of structural descriptors. Moreover,we found that the structures with completely different distortions of inorganic framework can have similar band gap, as illustrated by a number of both experimental and model structures.
The evolution of the optical phonons in layered semiconductor alloys SnSe1-xSx is studied as a function of the composition by using polarized Raman spectroscopy with six different excitation wavelengths (784.8, 632.8, 532, 514.5, 488, and 441.6 nm). The polarization dependences of the phonon modes are compared with transmission electron diffraction measurements to determine the crystallographic orientation of the samples. Some of the Raman modes show significant variation in their polarization behavior depending on the excitation wavelengths. It is established that the maximum intensity direction of the Ag2 mode of SnSe1-xSx (0<=x<=1) does not depend on the excitation wavelength and corresponds to the armchair direction. It is additionally found that the lower-frequency Raman modes of Ag1, Ag2 and B3g1 in the alloys show the typical one-mode behavior of optical phonons, whereas the higher-frequency modes of B3g2, Ag3 and Ag4 show two-mode behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا