ترغب بنشر مسار تعليمي؟ اضغط هنا

Failure Analysis and Field Failures: a Real Shortcut to Reliability Improvement

88   0   0.0 ( 0 )
 نشر من قبل Francoise Heres-Renzetti
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting from two case histories, where only after thorough Failure Analysis the suddenly appearance of a failure was linked to much earlier events, the possibility of improving the reliability and of adjusting the reliability prediction tools are discussed.

قيم البحث

اقرأ أيضاً

The Kubo formula for the electrical conductivity is rewritten in terms of a sum of Drude-like contributions associated to the exact eigenstates of the interacting system, each characterized by its own frequency-dependent relaxation time. The structur e of the novel and equivalent formulation, weighting the contribution from each eigenstate by its Boltzmann occupation factor, simplifies considerably the access to the static properties (dc conductivity) and resolves the long standing difficulties to recover the Boltzmann result for dc conductivity from the Kubo formula. It is shown that the Boltzmann result, containing the correct transport scattering time instead of the electron lifetime determined by the Green function, can be recovered in problems with elastic and inelastic scattering at the lowest order of interaction.
Using the adaptive time-dependent density-matrix renormalization group method for the 1D Hubbard model, the splitting of local perturbations into separate wave packets carrying charge and spin is observed in real-time. We show the robustness of this separation beyond the low-energy Luttinger liquid theory by studying the time-evolution of single particle excitations and density wave packets. A striking signature of spin-charge separation is found in 1D cold Fermi gases in a harmonic trap at the boundary between liquid and Mott-insulating phases. We give quantitative estimates for an experimental observation of spin-charge separation in an array of atomic wires.
Due to the fact that no study to date has shown the experimental validity of ACC-based measures of body sway with respect to posturography for subjects with vestibular deficits, the aim of the present study was: i) to develop and validate a practical tool that can allow clinicians to measure postural sway derangements in an otoneurological setting by ACC, and ii) to provide reliable, sensitive and accurate automatic analysis of sway that could help in discriminating unilateral vestibular failure (UVF) patients. Thus, a group of 13 patients (seven females, 6 males; mean age 48.6 +/- 6.4 years) affected for at least 6 months by UVF and 13 matched healthy subjects were instructed to maintain an upright position during a static forceplate-based posturography (FBP) acquisition while wearing a Movit sensor (by Captiks) with 3-D accelerometers mounted on the posterior trunk near the body centre of mass. Pearson product moment correlation demonstrated a high level of correspondence of four time-domain and three frequency-domain measures extracted by ACC and FBP testing; in addition, t-test demonstrated that two ACC-based time- and frequency-domain parameters were reliable measures in discriminating UVF subjects. These aspects, overall, should further highlight the attention of clinicians and researchers to this kind of sway recording technique in the field of otoneurological disorders by considering the possibility to enrich the amount of quantitative and qualitative information useful for discrimination, diagnosis and treatment of UVF. In conclusion, we believe the present ACC-based measurement of sway offers a patient-friendly, reliable, inexpensive and efficient alternative recording technique that is useful - together with clinical balance and mobility tests - in various circumstances, as well as in outcome studies involving diagnosis, follow-up and rehabilitation of UVF patients.
Real systems are usually composed by units or nodes whose activity can be interrupted and restored intermittently due to complex interactions not only with the environment, but also with the same system. Majdandv{z}ic $et;al.$ [Nature Physics 10, 34 (2014)] proposed a model to study systems in which active nodes fail and recover spontaneously in a complex network and found that in the steady state the density of active nodes can exhibit an abrupt transition and hysteresis depending on the values of the parameters. Here we investigate a model of recovery-failure from a dynamical point of view. Using an effective degree approach we find that the systems can exhibit a temporal sharp decrease in the fraction of active nodes. Moreover we show that, depending on the values of the parameters, the fraction of active nodes has an oscillatory regime which we explain as a competition between different failure processes. We also find that in the non-oscillatory regime, the critical fraction of active nodes presents a discontinuous drop which can be related to a targeted k-core percolation process. Finally, using mean field equations we analyze the space of parameters at which hysteresis and oscillatory regimes can be found.
Measurable spectra are theoretically very often derived from complicated many-body Greens functions. In this way, one calculates much more information than actually needed. Here we present an in principle exact approach to construct effective potenti als and kernels for the direct calculation of electronic spectra. In particular, the potential that yields the spectral function needed to describe photoemission turns out to be dynamical but {it local} and {it real}. As example we illustrate this ``photoemission potential for sodium and aluminium, modelled as homogeneous electron gas, and discuss in particular its frequency dependence stemming from the nonlocality of the corresponding self-energy. We also show that our approach leads to a very short derivation of a kernel that is known to well describe absorption and energy-loss spectra of a wide range of materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا