ترغب بنشر مسار تعليمي؟ اضغط هنا

We study equilibrium and nonequilibrium properties of the single-impurity Anderson model with a power-law pseudogap in the density of states. In equilibrium, the model is known to display a quantum phase transition from a generalized Kondo to a local moment phase. In the present work, we focus on the extension of these phases beyond equilibrium, i.e. under the influence of a bias voltage. Within the auxiliary master equation approach combined with a scheme based on matrix product states (MPS) we are able to directly address the current-carrying steady state. Starting with the equilibrium situation, we first corroborate our results by comparing with a direct numerical evaluation of ground state spectral properties of the system by MPS. Here, a scheme to locate the phase boundary by extrapolating the power-law exponent of the self energy produces a very good agreement with previous results obtained by the numerical renormalization group. Our nonequilibrium study as a function of the applied bias voltage is then carried out for two points on either side of the phase boundary. In the Kondo regime the resonance in the spectral function is splitted as a function of the increasing bias voltage. The local moment regime, instead, displays a dip in the spectrum near the position of the chemical potentials. Similar features are observed in the corresponding self energies. The Kondo split peaks approximately obey a power-law behavior as a function of frequency, whose exponents depend only slightly on voltage. Finally, the differential conductance in the Kondo regime shows a peculiar maximum at finite voltages, whose height, however, is below the accuracy level.
We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage $phi$ and a magnetic field $B$. We investigate the interplay between the shift ($omega_B$) of the Kondo peak in the spin-resolved density of states ( DOS) and the one ($phi_B$) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of $B$ down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as $phi_B$ only for $|g| mu_B B gg k_B T_K$. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.
We study nonequilibrium thermoelectric transport properties of a correlated impurity connected to two leads for temperatures below the Kondo scale. At finite bias, for which a current flows across the leads, we investigate the differential response o f the current to a temperature gradient. In particular, we compare the influence of a bias voltage and of a finite temperature on this thermoelectric response. This is of interest from a fundamental point of view to better understand the two different decoherence mechanisms produced by a bias voltage and by temperature. Our results show that in this respect the thermoelectric response behaves differently from the electric conductance. In particular, while the latter displays a similar qualitative behavior as a function of voltage and temperature, both in theoretical and experimental investigations, qualitative differences occur in the case of the thermoelectric response. In order to understand this effect, we analyze the different contributions in connection to the behavior of the impurity spectral function versus temperature. Especially in the regime of strong interactions and large enough bias voltages we obtain a simple picture based on the asymmetric suppression or enhancement of the split Kondo peaks as a function of the temperature gradient. Besides the academic interest, these studies could additionally provide valuable information to assess the applicability of quantum dot devices as responsive nanoscale temperature sensors.
We present a general scheme to map correlated nonequilibrium quantum impurity problems onto an auxiliary open quantum system of small size. The infinite fermionic reservoirs of the original system are thereby replaced by a small number $N_B$ of nonin teracting auxiliary bath sites whose dynamics is described by a Lindblad equation. Due to the presence of the intermediate bath sites, the overall dynamics acting on the impurity site is non-Markovian. With the help of an optimization scheme for the auxiliary Lindblad parameters, an accurate mapping is achieved, which becomes exponentially exact upon increasing $N_B$. The basic idea for this scheme was presented previously in the context of nonequilibrium dynamical mean field theory. In successive works on improved manybody solution strategies for the auxiliary Lindblad equation, such as Lanczos exact diagonalization or matrix product states, we applied the approach to study the nonequilibrium Kondo regime. In the present paper, we address in detail the mapping procedure itself, rather than the many-body solution. In particular, we investigate the effects of the geometry of the auxiliary system on the accuracy of the mapping for given $N_B$. Specifically, we present a detailed convergence study for five different geometries which, besides being of practical utility, reveals important insights into the underlying mechanisms of the mapping. For setups with onsite or nearest-neighbor Lindblad parameters we find that a representation adopting two separate bath chains is by far more accurate with respect to other choices based on a single chain or a commonly used star geometry. A significant improvement is obtained by allowing for long-ranged and complex Lindblad parameters. These results can be of great value when studying Lindblad-type approaches to correlated systems.
A numerical approach is presented that allows to compute nonequilibrium steady state properties of strongly correlated quantum many-body systems. The method is imbedded in the Keldysh Greens function formalism and is based upon the idea of the variat ional cluster approach as far as the treatment of strong correlations is concerned. It appears that the variational aspect is crucial as it allows for a suitable optimization of a reference system to the nonequilibrium target state. The approach is neither perturbative in the many-body interaction nor in the field, that drives the system out of equilibrium, and it allows to study strong perturbations and nonlinear responses of systems in which also the correlated region is spatially extended. We apply the presented approach to non-linear transport across a strongly correlated quantum wire described by the fermionic Hubbard model. We illustrate how the method bridges to cluster dynamical mean-field theory upon coupling two baths containing and increasing number of uncorrelated sites.
Among the various numerical techniques to study the physics of strongly correlated quantum many-body systems, the self-energy functional approach (SFA) has become increasingly important. In its previous form, however, SFA is not applicable to Bose-Ei nstein condensation or superfluidity. In this paper we show how to overcome this shortcoming. To this end we identify an appropriate quantity, which we term $D$, that represents the correlation correction of the condensate order parameter, as it does the self-energy for the Greens function. An appropriate functional is derived, which is stationary at the exact physical realizations of $D$ and of the self-energy. Its derivation is based on a functional-integral representation of the grand potential followed by an appropriate sequence of Legendre transformations. The approach is not perturbative and therefore applicable to a wide range of models with local interactions. We show that the variational cluster approach based on the extended self-energy functional is equivalent to the pseudoparticle approach introduced in Phys. Rev. B, 83, 134507 (2011). We present results for the superfluid density in the two-dimensional Bose-Hubbard model, which show a remarkable agreement with those of Quantum-Monte-Carlo calculations.
One central challenge in high-$T_c$ superconductivity (SC) is to derive a detailed understanding for the specific role of the $Cu$-$d_{x^2-y^2}$ and $O$-$p_{x,y}$ orbital degrees of freedom. In most theoretical studies an effective one-band Hubbard ( 1BH) or t-J model has been used. Here, the physics is that of doping into a Mott-insulator, whereas the actual high-$T_c$ cuprates are doped charge-transfer insulators. To shed light on the related question, where the material-dependent physics enters, we compare the competing magnetic and superconducting phases in the ground state, the single- and two-particle excitations and, in particular, the pairing interaction and its dynamics in the three-band Hubbard (3BH) and 1BH-models. Using a cluster embedding scheme, i.e. the variational cluster approach (VCA), we find which frequencies are relevant for pairing in the two models as a function of interaction strength and doping: in the 3BH-models the interaction in the low- to optimal-doping regime is dominated by retarded pairing due to low-energy spin fluctuations with surprisingly little influence of inter-band (p-d charge) fluctuations. On the other hand, in the 1BH-model, in addition a part comes from high-energy excited states (Hubbard band), which may be identified with a non-retarded contribution. We find these differences between a charge-transfer and a Mott insulator to be renormalized away for the ground-state phase diagram of the 3BH- and 1BH-models, which are in close overall agreement, i.e. are universal. On the other hand, we expect the differences - and thus, the material dependence to show up in the non-universal finite-T phase diagram ($T_c$-values).
We carry out a detailed numerical study of the three-band Hubbard model in the underdoped region both in the hole- as well as in the electron-doped case by means of the variational cluster approach. Both the phase diagram and the low-energy single-pa rticle spectrum are very similar to recent results for the single-band Hubbard model with next-nearest-neighbor hoppings. In particular, we obtain a mixed antiferromagnetic+superconducting phase at low doping with a first-order transition to a pure superconducting phase accompanied by phase separation. In the single-particle spectrum a clear Zhang-Rice singlet band with an incoherent and a coherent part can be seen, in which holes enter upon doping around $(pi/2,pi/2)$. The latter is very similar to the coherent quasi-particle band crossing the Fermi surface in the single-band model. Doped electrons go instead into the upper Hubbard band, first filling the regions of the Brillouin zone around $(pi,0)$. This fact can be related to the enhanced robustness of the antiferromagnetic phase as a function of electron doping compared to hole doping.
We present a numerical study of the doping dependence of the spectral function of the n-type cuprates. Using a variational cluster-perturbation theory approach based upon the self-energy-functional theory, the spectral function of the electron-doped two-dimensional Hubbard model is calculated. The model includes the next-nearest neighbor electronic hopping amplitude $t$ and a fixed on-site interaction $U=8t$ at half filling and doping levels ranging from $x=0.077$ to $x=0.20$. Our results support the fact that a comprehensive description of the single-particle spectrum of electron-doped cuprates requires a proper treatment of strong electronic correlations. In contrast to previous weak-coupling approaches, we obtain a consistent description of the ARPES experiments without the need to introduce a doping-dependent on-site interaction $U$.
We study the quantum transition from an antiferromagnet to a superconductor in a model for electron- and hole-doped cuprates by means of a variational cluster perturbation theory approach. In both cases, our results suggest a tendency towards phase s eparation between a mixed antiferromagnetic-superconducting phase at low doping and a pure superconducting phase at larger doping. However, in the electron-doped case the energy scale for phase separation is an order of magnitude smaller than for hole doping. We argue that this can explain the different pseudogap and superconducting transition scales in hole- and electron-doped materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا