ﻻ يوجد ملخص باللغة العربية
A numerical approach is presented that allows to compute nonequilibrium steady state properties of strongly correlated quantum many-body systems. The method is imbedded in the Keldysh Greens function formalism and is based upon the idea of the variational cluster approach as far as the treatment of strong correlations is concerned. It appears that the variational aspect is crucial as it allows for a suitable optimization of a reference system to the nonequilibrium target state. The approach is neither perturbative in the many-body interaction nor in the field, that drives the system out of equilibrium, and it allows to study strong perturbations and nonlinear responses of systems in which also the correlated region is spatially extended. We apply the presented approach to non-linear transport across a strongly correlated quantum wire described by the fermionic Hubbard model. We illustrate how the method bridges to cluster dynamical mean-field theory upon coupling two baths containing and increasing number of uncorrelated sites.
Dynamical phase transitions extend the notion of criticality to non-stationary settings and are characterized by sudden changes in the macroscopic properties of time-evolving quantum systems. Investigations of dynamical phase transitions combine aspe
A powerful perspective in understanding non-equilibrium quantum dynamics is through the time evolution of its entanglement content. Yet apart from a few guiding principles for the entanglement entropy, to date, not much else is known about the refine
Non-Hermtian (NH) Hamiltonians effectively describing the physics of dissipative systems have become an important tool with applications ranging from classical meta-materials to quantum many-body systems. Exceptional points, the NH counterpart of spe
Numerical simulations of strongly correlated electron systems suffer from the notorious fermion sign problem which has prevented progress in understanding if systems like the Hubbard model display high-temperature superconductivity. Here we show how
The formalism for exactly calculating the retarded and advanced Greens functions of strongly correlated lattice models in a uniform electric field is derived within dynamical mean-field theory. To illustrate the method, we solve for the nonequilibriu