ترغب بنشر مسار تعليمي؟ اضغط هنا

The 3-Band Hubbard-Model versus the 1-Band Model for the high-Tc Cuprates: Pairing Dynamics, Superconductivity and the Ground-State Phase Diagram

367   0   0.0 ( 0 )
 نشر من قبل Enrico Arrigoni
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One central challenge in high-$T_c$ superconductivity (SC) is to derive a detailed understanding for the specific role of the $Cu$-$d_{x^2-y^2}$ and $O$-$p_{x,y}$ orbital degrees of freedom. In most theoretical studies an effective one-band Hubbard (1BH) or t-J model has been used. Here, the physics is that of doping into a Mott-insulator, whereas the actual high-$T_c$ cuprates are doped charge-transfer insulators. To shed light on the related question, where the material-dependent physics enters, we compare the competing magnetic and superconducting phases in the ground state, the single- and two-particle excitations and, in particular, the pairing interaction and its dynamics in the three-band Hubbard (3BH) and 1BH-models. Using a cluster embedding scheme, i.e. the variational cluster approach (VCA), we find which frequencies are relevant for pairing in the two models as a function of interaction strength and doping: in the 3BH-models the interaction in the low- to optimal-doping regime is dominated by retarded pairing due to low-energy spin fluctuations with surprisingly little influence of inter-band (p-d charge) fluctuations. On the other hand, in the 1BH-model, in addition a part comes from high-energy excited states (Hubbard band), which may be identified with a non-retarded contribution. We find these differences between a charge-transfer and a Mott insulator to be renormalized away for the ground-state phase diagram of the 3BH- and 1BH-models, which are in close overall agreement, i.e. are universal. On the other hand, we expect the differences - and thus, the material dependence to show up in the non-universal finite-T phase diagram ($T_c$-values).



قيم البحث

اقرأ أيضاً

We study the three-band Hubbard model for the copper oxide plane of the high-temperature superconducting cuprates using determinant quantum Monte Carlo and the dynamical cluster approximation (DCA) and provide a comprehensive view of the pairing corr elations in this model using these methods. Specifically, we compute the pair-field susceptibility and study its dependence on temperature, doping, interaction strength, and charge-transfer energy. Using the DCA, we also solve the Bethe-Salpeter equation for the two-particle Greens function in the particle-particle channel to determine the transition temperature to the superconducting phase on smaller clusters. Our calculations reproduce many aspects of the cuprate phase diagram and indicate that there is an optimal value of the charge-transfer energy for the model where $T_c$ is largest. These results have implications for our understanding of superconductivity in both the cuprates and other doped charge-transfer insulators.
We determine the ground-state phase diagram of the three-band Hubbard model across a range of model parameters using density matrix embedding theory. We study the atomic-scale nature of the antiferromagnetic (AFM) and superconducting (SC) orders, exp licitly including the oxygen degrees of freedom. All parametrizations of the model display AFM and SC phases, but the decay of AFM order with doping is too slow compared to the experimental phase diagram, and further, coexistence of AFM and SC orders occurs in all parameter sets. The local magnetic moment localizes entirely at the copper sites. The magnetic phase diagram is particularly sensitive to $Delta_{pd}$ and $t_{pp}$, and existing estimates of the charge transfer gap $Delta_{pd}$ appear too large in so-called minimal model parametrizations. The electron-doped side of the phase diagram is qualitatively distinct from hole-doped side and we find an unusual two-peak structure in the SC in the full model parametrization. Examining the SC order at the atomic scale, within the larger scale $d_{x^2 - y^2}$-wave SC pairing order between Cu-Cu and O-O, we also observe a local $p_{x (y)}$ [or $d_{xz (yz)}$]-symmetry modulation of the pair density on the Cu-O bonds. Our work highlights some of the features that arise in a three-band versus one-band picture, the role of the oxygen degrees of freedom in new kinds of atomic-scale SC orders, and the necessity of re-evaluating current parametrizations of the three-band Hubbard model.
We present the influences of electronic and magnetic correlations and doping evolution on the groundstate properties of recently discovered superconductor Ba$_{2}$CuO$_{4-delta}$ by utilizing the Kotliar-Ruckenstein slave boson method. Starting with an effective two-orbital Hubbard model (Scalapino {it et al.} Phys. Rev. {bf B 99}, 224515 (2019)), we demonstrate that with increasing doping concentration, the paramagnetic (PM) system evolves from two-band character to single-band ones around the electron filling n=2.5, with the band nature of the $d_{3z^{2}-r^{2}}$ and $d_{x^{2}-y^{2}}$ orbitals to the $d_{x^{2}-y^{2}}$ orbital, slightly affected when the electronic correlation U varies from 2 to 4 eV. Considering the magnetic correlations, the system displays one antiferromagnetically metallic (AFM) phase in $2<n<2.16$ and a PM phase in $n>2.16$ at U=2 eV, or two AFM phases in $2<n<2.57$ and $2.76<n<3$, and a PM phase in $2.57<n<2.76$ respectively, at U=4 eV. Our results show that near realistic superconducting state around n=2.6 the intermediate correlated Ba$_{2}$CuO$_{3,2}$ should be single band character, and the s-wave superconducting pairing strength becomes significant when U$>$2 eV, and crosses over to d-wave when U$>$2.2 eV.
The Green function (GF) equation of motion technique for solving the effective two-band Hubbard model of high-T_c superconductivity in cuprates [N.M. Plakida et al., Phys. Rev. B, v. 51, 16599 (1995); JETP, v. 97, 331 (2003)] rests on the Hubbard ope rator (HO) algebra. We show that, if we take into account the invariance to translations and spin reversal, the HO algebra results in invariance properties of several specific correlation functions. The use of these properties allows rigorous derivation and simplification of the expressions of the frequency matrix (FM) and of the generalized mean field approximation (GMFA) Green functions (GFs) of the model. For the normal singlet hopping and anomalous exchange pairing correlation functions which enter the FM and GMFA-GFs, an approximation procedure based on the identification and elimination of exponentially small quantities is described. It secures the reduction of the correlation order to GMFA-GF expressions.
We have studied the influence of disorder induced by electron irradiation on the normal state resistivities $rho(T)$ of optimally and underdoped YBa2CuOx single crystals, using pulsed magnetic fields up to 60T to completely restore the normal state. We evidence that point defect disorder induces low T upturns of rho(T) which saturate in some cases at low T in large applied fields as would be expected for a Kondo-like magnetic response. Moreover the magnitude of the upturns is related to the residual resistivity, that is to the concentration of defects and/or their nanoscale morphology. These upturns are found quantitatively identical to those reported in lower Tc cuprates, which establishes the importance of disorder in these supposedly pure compounds. We therefore propose a realistic phase diagram of the cuprates, including disorder, in which the superconducting state might reach the antiferromagnetic phase in the clean limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا